17,302 research outputs found

    Microcanonical Ensemble and Algebra of Conserved Generators for Generalized Quantum Dynamics

    Get PDF
    It has recently been shown, by application of statistical mechanical methods to determine the canonical ensemble governing the equilibrium distribution of operator initial values, that complex quantum field theory can emerge as a statistical approximation to an underlying generalized quantum dynamics. This result was obtained by an argument based on a Ward identity analogous to the equipartition theorem of classical statistical mechanics. We construct here a microcanonical ensemble which forms the basis of this canonical ensemble. This construction enables us to define the microcanonical entropy and free energy of the field configuration of the equilibrium distribution and to study the stability of the canonical ensemble. We also study the algebraic structure of the conserved generators from which the microcanonical and canonical ensembles are constructed, and the flows they induce on the phase space.Comment: Plain TeX, 18 pages. Corrected report number onl

    Remarks on a Proposed Super-Kamiokande Test for Quantum Gravity Induced Decoherence Effects

    Full text link
    Lisi, Marrone, and Montanino have recently proposed a test for quantum gravity induced decoherence effects in neutrino oscillations observed at Super-Kamiokande. We comment here that their equations have the same qualitative form as the energy conserving objective state vector reduction equations discussed by a number of authors. However, using the Planckian parameter value proposed to explain state vector reduction leads to a neutrino oscillation effect many orders of magnitude smaller than would be detectable at Super-Kamiokande. Similar estimates hold for the Ghirardi, Rimini, and Weber spontaneous localization approach to state vector reduction, and our remarks are relevant as well to proposed KK meson and BB meson tests of gravity induced decoherence.Comment: 10 pages, plain Tex, no figure

    Dynamical Reduction Models with General Gaussian Noises

    Get PDF
    We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the statevector, white noise stochastic processes with non white ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view the most relevant motivation for the approach we propose here derives from the fact that in relativistic models the occurrence of white noises is the main responsible for the appearance of untractable divergences. Therefore, one can hope that resorting to non white noises one can overcome such a difficulty. We investigate stochastic equations with non white noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above mentioned subject but also for the general study of dissipative systems and decoherence.Comment: 22 pages, Late

    Notes and Comments

    Get PDF

    Multi-particle Correlations in Quaternionic Quantum Systems

    Full text link
    We investigate the outcomes of measurements on correlated, few-body quantum systems described by a quaternionic quantum mechanics that allows for regions of quaternionic curvature. We find that a multi-particle interferometry experiment using a correlated system of four nonrelativistic, spin-half particles has the potential to detect the presence of quaternionic curvature. Two-body systems, however, are shown to give predictions identical to those of standard quantum mechanics when relative angles are used in the construction of the operators corresponding to measurements of particle spin components.Comment: REVTeX 3.0, 16 pages, no figures, UM-P-94/54, RCHEP-94/1

    Radiative and Collisional Energy Loss, and Photon-Tagged Jets at RHIC

    Full text link
    The suppression of single jets at high transverse momenta in a quark-gluon plasma is studied at RHIC energies, and the additional information provided by a photon tag is included. The energy loss of hard jets traversing through the medium is evaluated in the AMY formalism, by consistently taking into account the contributions from radiative events and from elastic collisions at leading order in the coupling. The strongly-interacting medium in these collisions is modelled with (3+1)-dimensional ideal relativistic hydrodynamics. Putting these ingredients together with a complete set of photon-production processes, we present a calculation of the nuclear modification of single jets and photon-tagged jets at RHIC.Comment: 4 pages, 4 figures, contributed to the 3rd International Conference on Hard and Electro-Magnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2008), typos corrected, published versio

    Overview of the Status and Strangeness Capabilities of STAR

    Full text link
    STAR is a large acceptance spectrometer capable of precision measurements of a wide variety of strange particles. We discuss the STAR detector, its configuration during the first two years of RHIC operation, and its initial performance for Au+Au collisions. The expected performance for strangeness physics and initial data on strange particle reconstruction in Au+Au collisions are presented.Comment: Proceedings of the Fifth International Conference on Strangeness in Quark Matter, Berkeley, California, July 20-25, 200

    Comments on Proposed Gravitational Modifications of Schrodinger Dynamics and their Experimental Implications

    Get PDF
    We discuss aspects of gravitational modifications of Schrodinger dynamics proposed by Diosi and Penrose. We consider first the Diosi-Penrose criterion for gravitationally induced state vector reduction, and compute the reduction time expected for a superposition of a uniform density cubical solid in two positions displaced by a small fraction of the cube side. We show that the predicted effect is much smaller than would be observable in the proposed Marshall et al. mirror experiment. We then consider the ``Schrodinger -Newton'' equation for an N-particle system. We show that in the independent particle approximation, it differs from the usual Hartree approximation applied to the Newtonian potential by self-interaction terms, which do not have a consistent Born rule interpretation. This raises doubts about the use of the Schrodinger-Newton equation to calculate gravitational effects on molecular interference experiments. When the effects of Newtonian gravitation on molecular diffraction are calculated using the standard many-body Schrodinger equation, no washing out of the interference pattern is predicted.Comment: Tex, 17

    Collapse models with non-white noises

    Full text link
    We set up a general formalism for models of spontaneous wave function collapse with dynamics represented by a stochastic differential equation driven by general Gaussian noises, not necessarily white in time. In particular, we show that the non-Schrodinger terms of the equation induce the collapse of the wave function to one of the common eigenstates of the collapsing operators, and that the collapse occurs with the correct quantum probabilities. We also develop a perturbation expansion of the solution of the equation with respect to the parameter which sets the strength of the collapse process; such an approximation allows one to compute the leading order terms for the deviations of the predictions of collapse models with respect to those of standard quantum mechanics. This analysis shows that to leading order, the ``imaginary'' noise trick can be used for non-white Gaussian noise.Comment: Latex, 20 pages;references added and minor revisions; published as J. Phys. A: Math. Theor. {\bf 40} (2007) 15083-1509

    Quasistationary quaternionic Hamiltonians and complex stochastic maps

    Get PDF
    We show that the complex projections of time-dependent η\eta -quasianti-Hermitian quaternionic Hamiltonian dynamics are complex stochastic dynamics in the space of complex quasi-Hermitian density matrices if and only if a quasistationarity condition is fulfilled, i. e., if and only if η\eta is an Hermitian positive time-independent complex operator. An example is also discussed.Comment: Submitted to J. Phys. A on October 25 200
    corecore