64 research outputs found

    An Incremental Learning Method to Support the Annotation of Workflows with Data-to-Data Relations

    Get PDF
    Workflow formalisations are often focused on the representation of a process with the primary objective to support execution. However, there are scenarios where what needs to be represented is the effect of the process on the data artefacts involved, for example when reasoning over the corresponding data policies. This can be achieved by annotating the workflow with the semantic relations that occur between these data artefacts. However, manually producing such annotations is difficult and time consuming. In this paper we introduce a method based on recommendations to support users in this task. Our approach is centred on an incremental rule association mining technique that allows to compensate the cold start problem due to the lack of a training set of annotated workflows. We discuss the implementation of a tool relying on this approach and how its application on an existing repository of workflows effectively enable the generation of such annotations

    XNAP: Making LSTM-based Next Activity Predictions Explainable by Using LRP

    Full text link
    Predictive business process monitoring (PBPM) is a class of techniques designed to predict behaviour, such as next activities, in running traces. PBPM techniques aim to improve process performance by providing predictions to process analysts, supporting them in their decision making. However, the PBPM techniques` limited predictive quality was considered as the essential obstacle for establishing such techniques in practice. With the use of deep neural networks (DNNs), the techniques` predictive quality could be improved for tasks like the next activity prediction. While DNNs achieve a promising predictive quality, they still lack comprehensibility due to their hierarchical approach of learning representations. Nevertheless, process analysts need to comprehend the cause of a prediction to identify intervention mechanisms that might affect the decision making to secure process performance. In this paper, we propose XNAP, the first explainable, DNN-based PBPM technique for the next activity prediction. XNAP integrates a layer-wise relevance propagation method from the field of explainable artificial intelligence to make predictions of a long short-term memory DNN explainable by providing relevance values for activities. We show the benefit of our approach through two real-life event logs

    Enhancing workflow-nets with data for trace completion

    Full text link
    The growing adoption of IT-systems for modeling and executing (business) processes or services has thrust the scientific investigation towards techniques and tools which support more complex forms of process analysis. Many of them, such as conformance checking, process alignment, mining and enhancement, rely on complete observation of past (tracked and logged) executions. In many real cases, however, the lack of human or IT-support on all the steps of process execution, as well as information hiding and abstraction of model and data, result in incomplete log information of both data and activities. This paper tackles the issue of automatically repairing traces with missing information by notably considering not only activities but also data manipulated by them. Our technique recasts such a problem in a reachability problem and provides an encoding in an action language which allows to virtually use any state-of-the-art planning to return solutions

    What Automated Planning Can Do for Business Process Management

    Get PDF
    Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle

    Prescriptive Business Process Monitoring for Recommending Next Best Actions

    Full text link
    Predictive business process monitoring (PBPM) techniques predict future process behaviour based on historical event log data to improve operational business processes. Concerning the next activity prediction, recent PBPM techniques use state-of-the-art deep neural networks (DNNs) to learn predictive models for producing more accurate predictions in running process instances. Even though organisations measure process performance by key performance indicators (KPIs), the DNN`s learning procedure is not directly affected by them. Therefore, the resulting next most likely activity predictions can be less beneficial in practice. Prescriptive business process monitoring (PrBPM) approaches assess predictions regarding their impact on the process performance (typically measured by KPIs) to prevent undesired process activities by raising alarms or recommending actions. However, none of these approaches recommends actual process activities as actions that are optimised according to a given KPI. We present a PrBPM technique that transforms the next most likely activities into the next best actions regarding a given KPI. Thereby, our technique uses business process simulation to ensure the control-flow conformance of the recommended actions. Based on our evaluation with two real-life event logs, we show that our technique`s next best actions can outperform next activity predictions regarding the optimisation of a KPI and the distance from the actual process instances

    Predictive Process Monitoring Methods: Which One Suits Me Best?

    Full text link
    Predictive process monitoring has recently gained traction in academia and is maturing also in companies. However, with the growing body of research, it might be daunting for companies to navigate in this domain in order to find, provided certain data, what can be predicted and what methods to use. The main objective of this paper is developing a value-driven framework for classifying existing work on predictive process monitoring. This objective is achieved by systematically identifying, categorizing, and analyzing existing approaches for predictive process monitoring. The review is then used to develop a value-driven framework that can support organizations to navigate in the predictive process monitoring field and help them to find value and exploit the opportunities enabled by these analysis techniques
    • …
    corecore