84 research outputs found

    Higher Genus Correlators for the Complex Matrix Model

    Full text link
    We describe an iterative scheme which allows us to calculate any multi-loop correlator for the complex matrix model to any genus using only the first in the chain of loop equations. The method works for a completely general potential and the results contain no explicit reference to the couplings. The genus gg contribution to the mm--loop correlator depends on a finite number of parameters, namely at most 4g2+m4g-2+m. We find the generating functional explicitly up to genus three. We show as well that the model is equivalent to an external field problem for the complex matrix model with a logarithmic potential.Comment: 17 page

    Matrix Model Calculations beyond the Spherical Limit

    Full text link
    We propose an improved iterative scheme for calculating higher genus contributions to the multi-loop (or multi-point) correlators and the partition function of the hermitian one matrix model. We present explicit results up to genus two. We develop a version which gives directly the result in the double scaling limit and present explicit results up to genus four. Using the latter version we prove that the hermitian and the complex matrix model are equivalent in the double scaling limit and that in this limit they are both equivalent to the Kontsevich model. We discuss how our results away from the double scaling limit are related to the structure of moduli space.Comment: 44 page

    4D Quantum Gravity Coupled to Matter

    Full text link
    We investigate the phase structure of four-dimensional quantum gravity coupled to Ising spins or Gaussian scalar fields by means of numerical simulations. The quantum gravity part is modelled by the summation over random simplicial manifolds, and the matter fields are located in the center of the 4-simplices, which constitute the building blocks of the manifolds. We find that the coupling between spin and geometry is weak away from the critical point of the Ising model. At the critical point there is clear coupling, which qualitatively agrees with that of gaussian fields coupled to gravity. In the case of pure gravity a transition between a phase with highly connected geometry and a phase with very ``dilute'' geometry has been observed earlier. The nature of this transition seems unaltered when matter fields are included. It was the hope that continuum physics could be extracted at the transition between the two types of geometries. The coupling to matter fields, at least in the form discussed in this paper, seems not to improve the scaling of the curvature at the transition point.Comment: 15 pages, 9 figures (available as PS-files by request). Late

    The Two-point Function of c=-2 Matter Coupled to 2D Quantum Gravity

    Get PDF
    We construct a reparametrization invariant two-point function for c=-2 conformal matter coupled to two-dimensional quantum gravity. From the two-point function we extract the critical indices \nu and \eta. The results support the quantum gravity version of Fisher's scaling relation. Our approach is based on the transfer matrix formalism and exploits the formulation of the c=-2 string as an O(n) model on a random lattice

    Integrable 2D Lorentzian Gravity and Random Walks

    Get PDF
    We introduce and solve a family of discrete models of 2D Lorentzian gravity with higher curvature, which possess mutually commuting transfer matrices, and whose spectral parameter interpolates between flat and curved space-times. We further establish a one-to-one correspondence between Lorentzian triangulations and directed Random Walks. This gives a simple explanation why the Lorentzian triangulations have fractal dimension 2 and why the curvature model lies in the universality class of pure Lorentzian gravity. We also study integrable generalizations of the curvature model with arbitrary polygonal tiles. All of them are found to lie in the same universality class

    Thermodynamics of the quantum su(1,1)su(1,1) Landau-Lifshitz model

    Full text link
    We present thermodynamics of the quantum su(1,1) Landau-Lifshitz model, following our earlier exposition [J. Math. Phys. 50, 103518 (2009)] of the quantum integrability of the theory, which is based on construction of self-adjoint extensions, leading to a regularized quantum Hamiltonian for an arbitrary n-particle sector. Starting from general discontinuity properties of the functions used to construct the self-adjoint extensions, we derive the thermodynamic Bethe Ansatz equations. We show that due to non-symmetric and singular kernel, the self-consistency implies that only negative chemical potential values are allowed, which leads to the conclusion that, unlike its su(2) counterpart, the su(1,1) LL theory at T=0 has no instabilities.Comment: 10 page

    Generalized Penner models to all genera

    Full text link
    We give a complete description of the genus expansion of the one-cut solution to the generalized Penner model. The solution is presented in a form which allows us in a very straightforward manner to localize critical points and to investigate the scaling behaviour of the model in the vicinity of these points. We carry out an analysis of the critical behaviour to all genera addressing all types of multi-critical points. In certain regions of the coupling constant space the model must be defined via analytical continuation. We show in detail how this works for the Penner model. Using analytical continuation it is possible to reach the fermionic 1-matrix model. We show that the critical points of the fermionic 1-matrix model can be indexed by an integer, mm, as it was the case for the ordinary hermitian 1-matrix model. Furthermore the mm'th multi-critical fermionic model has to all genera the same value of γstr\gamma_{str} as the mm'th multi-critical hermitian model. However, the coefficients of the topological expansion need not be the same in the two cases. We show explicitly how it is possible with a fermionic matrix model to reach a m=2m=2 multi-critical point for which the topological expansion has alternating signs, but otherwise coincides with the usual Painlev\'{e} expansion.Comment: 27 pages, PostScrip

    New Penrose Limits and AdS/CFT

    Full text link
    We find a new Penrose limit of AdS_5 x S^5 giving the maximally supersymmetric pp-wave background with two explicit space-like isometries. This is an important missing piece in studying the AdS/CFT correspondence in certain subsectors. In particular whereas the Penrose limit giving one space-like isometry is useful for the SU(2) sector of N=4 SYM, this new Penrose limit is instead useful for studying the SU(2|3) and SU(1,2|3) sectors. In addition to the new Penrose limit of AdS_5 x S^5 we also find a new Penrose limit of AdS_4 x CP^3.Comment: 30 page

    The Morphology of N=6 Chern-Simons Theory

    Full text link
    We tabulate various properties of the language of N=6 Chern-Simons Theory, in the sense of Polyakov. Specifically we enumerate and compute character formulas for all syllables of up to four letters, i.e. all irreducible representations of OSp(6|4) built from up to four fundamental fields of the ABJM theory. We also present all tensor product decompositions for up to four singletons and list the (cyclically invariant) four-letter words, which correspond to single-trace operators of length four. As an application of these results we use the two-loop dilatation operator to compute the leading correction to the Hagedorn temperature of the weakly-coupled planar ABJM theory on R \times S^2.Comment: 41 pages, 1 figure; v2: minor correction
    corecore