489 research outputs found

    Generic Finite Size Enhancement of Pairing in Mesoscopic Fermi Systems

    Get PDF
    The finite size dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assumption that the BCS approach is valid and that the two body force is size independent. Different systems are investigated such as superconducting metallic grains and films as well atomic nuclei. It is shown that the finite size enhancement of pairing in these systems is in part due to the presence of a surface which accounts quite well for the data of nuclei and explains a good fraction of the enhancement in Al grains.Comment: Updated version 17/02/0

    Density-induced BCS to Bose-Einstein crossover

    Get PDF
    We investigate the zero-temperature BCS to Bose-Einstein crossover at the mean-field level, by driving it with the attractive potential and the particle density.We emphasize specifically the role played by the particle density in this crossover.Three different interparticle potentials are considered for the continuum model in three spatial dimensions, while both s- and d-wave solutions are analyzed for the attractive (extended) Hubbard model on a two-dimensional square lattice. For this model the peculiar behavior of the crossover for the d-wave solution is discussed.In particular, in the strong-coupling limit when approaching half filling we evidence the occurrence of strong correlations among antiparallel-spin fermions belonging to different composite bosons, which give rise to a quasi-long-range antiferromagnetic order in this limit.Comment: 10 pages, 5 enclosed figure

    Determination of the Fermion Pair Size in a Resonantly Interacting Superfluid

    Full text link
    Fermionic superfluidity requires the formation of pairs. The actual size of these fermion pairs varies by orders of magnitude from the femtometer scale in neutron stars and nuclei to the micrometer range in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in BCS-BEC crossover theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS) type superfluid of loosely bound and large Cooper pairs to Bose-Einstein condensation (BEC) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed with radio-frequency (rf) spectroscopy. Previous work was difficult to interpret due to strong and not well understood final state interactions. Here we realize a new superfluid spin mixture where such interactions have negligible influence and present fermion-pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine the spectroscopic pair size in the resonantly interacting gas to be 2.6(2)/kF (kF is the Fermi wave number). The pairs are therefore smaller than the interparticle spacing and the smallest pairs observed in fermionic superfluids. This finding highlights the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs into bound molecular states and into many-body bound states in the case of strong final state interactions.Comment: 8 pages, 7 figures; Figures updated; New Figures added; Updated discussion of fit function

    Non-interacting Cooper pairs inside a pseudogap

    Full text link
    I present a simple analytical model describing the normal state of a superconductor with a pseudogap in the density of states, such as in underdoped cuprates. In nearly two-dimensional systems, where the superconducting transition temperature is reduced from the mean-field BCS value, Cooper pairs may be present as slow fluctuations of the BCS pairing field. Using the self-consistent T-matrix (fluctuation exchange) approach I find that the fermion spectral weight exhibits two BCS-like peaks, broadened by fluctuations of the pairing field amplitude. The density of states becomes suppressed near the Fermi energy, which allows for long-lived low-energy Cooper pairs that propagate as a sound-like mode with a mass. A self-consistency requirement, linking the width of the pseudogap to the intensity of the pairing field, determines the pair condensation temperature. In nearly two-dimensional systems, it is proportional to the degeneracy temperature of the fermions, with a small prefactor that vanishes in two dimensions.Comment: LaTeX (prbbib.sty included), 24 pages, 4 PostScript figures To appear in Phys.Rev.

    Signatures of polaronic excitations in quasi-one-dimensional LaTiO3.41_{3.41}

    Full text link
    The optical properties of quasi-one-dimensional metallic LaTiO3.41_{3.41} are studied for the polarization along the aa and bb axes. With decreasing temperature modes appear along both directions suggestive for a phase transition. The broadness of these modes along the conducting axis might be due to the coupling of the phonons to low-energy electronic excitations across an energy gap. We observe a pronounced midinfrared band with a temperature dependence consistent with (interacting) polaron models. The polaronic picture is corroborated by the presence of strong electron-phonon coupling and the temperature dependence of the dc conductivity.Comment: 5 pages, 5 figure

    Variational Monte Carlo Study of Spin-Gapped Normal State and BCS-BEC Crossover in Two-Dimensional Attractive Hubbard Model

    Full text link
    We study properties of normal, superconducting (SC) and CDW states for an attractive Hubbard model on the square lattice, using a variational Monte Carlo method. In trial wave functions, we introduce an interspinon binding factor, indispensable to induce a spin-gap transition in the normal state, in addition to the onsite attractive and intersite repulsive factors. It is found that, in the normal state, as the interaction strength U/t|U|/t increases, a first-order spin-gap transition arises at UcW|U_{\rm c}|\sim W (WW: band width) from a Fermi liquid to a spin-gapped state, which is conductive through hopping of doublons. In the SC state, we confirm by analysis of various quantities that the mechanism of superconductivity undergoes a smooth crossover at around |U_{\ma{co}}|\sim |U_{\rm c}| from a BCS type to a Bose-Einstein condensation (BEC) type, as U/t|U|/t increases. For |U|<|U_{\ma{co}}|, quantities such as the condensation energy, a SC correlation function and the condensate fraction of onsite pairs exhibit behavior of exp(t/U)\sim \exp(-t/|U|), as expected from the BCS theory. For |U|>|U_{\ma{co}}|, quantities such as the energy gain in the SC transition and superfluid stiffness, which is related to the cost of phase coherence, behave as t2/UTc\sim t^2/|U|\propto T_{\rm c}, as expected in a bosonic scheme. In this regime, the SC transition is induced by a gain in kinetic energy, in contrast with the BCS theory. We refer to the relevance to the pseudogap in cuprate superconductors.Comment: 14 pages, 22 figures, submitted to Journal of the Physical Society of Japa

    Recent magnetic views of the Antarctic lithosphere

    Get PDF
    Magnetic anomaly investigations are a key tool to help unveil subglacial geology, crustal architecture and the tectonic and geodynamic evolution of the Antarctic continent. Here, we present the second generation Antarctic magnetic anomaly compilation ADMAP 2.0 (Golynsky et al., 2018), that now includes a staggering 3.5 million line-km of aeromagnetic and marine magnetic data, more than double the amount of data available in the first generation effort. All the magnetic data were corrected for the International Geomagnetic Reference Field, diurnal effects, high-frequency errors and leveled, gridded,and stitched together. The new magnetic anomaly dataset provides tantalising new views into the structure and evolution of the Antarctic Peninsula and the West Antarctic Rift System within West Antarctica, and Dronning Maud Land, the Gamburtsev Subglacial Mountains, the Prince Charles Mountains, Princess Elizabeth Land, and Wilkes Land in East Antarctica, as well as key insights into oceanic gateways. Our magnetic anomaly compilation is helping unify disparate regional geologic and geophysical studies by providing larger-scale perspectives into the major tectonic and magmatic processes that affected Antarctica from Precambrian to Cenozoic times, including e.g. the processes of subduction and magmatic arc development, orogenesis, accretion, cratonisation and continental rifting, as well as continental margin and oceanic basin evolution. The international Antarctic geomagnetic community remains very active in the wake of ADMAP 2.0, and we will showcase some of their key ongoing study areas, such as the South Pole and Recovery frontiers, the Ross Ice Shelf, Dronning Maud Land and Princess Elizabeth Land

    Selection of Forages for the Tropics (SoFT) - A Database and Selection Tool for Identifying Forages Adapted to Local Conditions in the Tropics and Subtropics

    Get PDF
    Rising populations and incomes in developing countries are likely to double demand for livestock products by 2020 (Delgado et al. 1999). This strong demand has potential to improve profitability for farmers but will require improved animal feeding in both semi-intensive crop-livestock and more extensive livestock systems. Forages usually are the most cost-effective option to supply feed demands, particularly for ruminant-, but also for pig- and poultry- production. It is critical to select the most suitable forages for the local system and conditions. Small- and even larger-scale farmers depend heavily on advice from extension and development agencies, and from seed companies, but this advice often is limited by inexperience and the difficulty in accessing reliable information. Expert information on an extensive range of tropical forages is now readily available through the SoFT database

    Self-Consistent Approximations for Superconductivity beyond the Bardeen-Cooper-Schrieffer Theory

    Full text link
    We develop a concise self-consistent perturbation expansion for superconductivity where all the pair processes are naturally incorporated without drawing "anomalous" Feynman diagrams. This simplification results from introducing an interaction vertex that is symmetric in the particle-hole indices besides the ordinary space-spin coordinates. The formalism automatically satisfies conservation laws, includes the Luttinger-Ward theory as the normal-state limit, and reproduces the Bardeen-Cooper-Schrieffer theory as the lowest-order approximation. It enables us to study the thermodynamic, single-particle, two-particle, and dynamical properties of superconductors with competing fluctuations based on a single functional Φ[G^]\Phi[\hat{G}] of Green's function G^\hat{G} in the Nambu space. Specifically, we derive closed equations in the FLEX-S approximation, i.e., the fluctuation exchange approximation for superconductivity with all the pair processes, which contains extra terms besides those in the standard FLEX approximation.Comment: 14 pages, 6 figure

    Drake-Scotia Sea gateways: onset and evolution of the Drake Passage and Scotia Sea, implications for global ocean circulation and climate

    Get PDF
    Australasian IODP Regional Planing Workshop (2017. Sidney)Instituto Geológico y Minero de España, EspañaInstituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, EspañaIstituto Nazionale di Oceanografia e Geofisica Sperimentale, ItaliaSan Diego State University, Estados UnidosPeer reviewe
    corecore