5,720 research outputs found
Large capacitance enhancement and negative compressibility of two-dimensional electronic systems at LaAlO/SrTiO interfaces
Novel electronic systems forming at oxide interfaces comprise a class of new
materials with a wide array of potential applications. A high mobility electron
system forms at the LaAlO/SrTiO interface and, strikingly, both
superconducts and displays indications of hysteretic magnetoresistance. An
essential step for device applications is establishing the ability to vary the
electronic conductivity of the electron system by means of a gate. We have
fabricated metallic top gates above a conductive interface to vary the electron
density at the interface. By monitoring capacitance and electric field
penetration, we are able to tune the charge carrier density and establish that
we can completely deplete the metallic interface with small voltages. Moreover,
at low carrier densities, the capacitance is significantly enhanced beyond the
geometric capacitance for the structure. In the same low density region, the
metallic interface overscreens an external electric field. We attribute these
observations to a negative compressibility of the electronic system at the
interface. Similar phenomena have been observed previously in semiconducting
two-dimensional electronic systems. The observed compressibility result is
consistent with the interface containing a system of mobile electrons in two
dimensions.Comment: 4 figures in main text; 4 figures in the supplemen
Constraining dark energy via baryon acoustic oscillations in the (an)isotropic light-cone power spectrum
The measurement of the scale of the baryon acoustic oscillations (BAO) in the
galaxy power spectrum as a function of redshift is a promising method to
constrain the equation-of-state parameter of the dark energy w. To measure the
scale of the BAO precisely, a substantial volume of space must be surveyed. We
test whether light-cone effects are important and whether the scaling relations
used to compensate for an incorrect reference cosmology are in this case
sufficiently accurate. We investigate the degeneracies in the cosmological
parameters and the benefits of using the two-dimensional anisotropic power
spectrum. Finally, we estimate the uncertainty with which w can be measured by
proposed surveys at redshifts of about z=3 and z=1, respectively.
In the simulated survey we find that light-cone effects are small and that
the simple scaling relations used to correct for the cosmological distortion
work fairly well even for large survey volumes. The analysis of the
two-dimensional anisotropic power spectra enables an independent determination
to be made of the apparent scale of the BAO, perpendicular and parallel to the
line of sight. This is essential for two-parameter w-models, such as the
redshift-dependent dark energy model w=w_0+(1-a)w_a. Using Planck priors for
the matter and baryon density and Delta(H_0)=5% for the Hubble constant, we
estimate that the BAO measurements of future surveys around z=3 and z=1 will be
able to constrain, independently of other cosmological probes, a constant w to
~ 12% and ~ 11% (68% c.l.), respectively.Comment: 12 pages, 15 figures. Matches version published by A&A. Expanded
significantly compared to the previous versio
Redshift-Space Enhancement of Line-of-Sight Baryon Acoustic Oscillations in the SDSS Main-Galaxy Sample
We show that redshift-space distortions of galaxy correlations have a strong
effect on correlation functions with distinct, localized features, like the
signature of the baryon acoustic oscillations (BAO). Near the line of sight,
the features become sharper as a result of redshift-space distortions. We
demonstrate this effect by measuring the correlation function in Gaussian
simulations and the Millennium Simulation. We also analyze the SDSS DR7
main-galaxy sample (MGS), splitting the sample into slices 2.5 degrees on the
sky in various rotations. Measuring 2D correlation functions in each slice, we
do see a sharp bump along the line of sight. Using Mexican-hat wavelets, we
localize it to (110 +/- 10) Mpc/h. Averaging only along the line of sight, we
estimate its significance at a particular wavelet scale and location at 2.2
sigma. In a flat angular weighting in the (pi,r_p) coordinate system, the noise
level is suppressed, pushing the bump's significance to 4 sigma. We estimate
that there is about a 0.2% chance of getting such a signal anywhere in the
vicinity of the BAO scale from a power spectrum lacking a BAO feature. However,
these estimates of the significances make some use of idealized Gaussian
simulations, and thus are likely a bit optimistic.Comment: 17 pages, 27 figures. Minor changes to match final version accepted
to Ap
Exploring Photometric Redshifts as an Optimization Problem: An Ensemble MCMC and Simulated Annealing-Driven Template-Fitting Approach
Using a grid of million elements () adapted from
COSMOS photometric redshift (photo-z) searches, we investigate the general
properties of template-based photo-z likelihood surfaces. We find these
surfaces are filled with numerous local minima and large degeneracies that
generally confound rapid but "greedy" optimization schemes, even with
additional stochastic sampling methods. In order to robustly and efficiently
explore these surfaces, we develop BAD-Z [Brisk Annealing-Driven Redshifts
(Z)], which combines ensemble Markov Chain Monte Carlo (MCMC) sampling with
simulated annealing to sample arbitrarily large, pre-generated grids in
approximately constant time. Using a mock catalog of 384,662 objects, we show
BAD-Z samples times more efficiently compared to a brute-force
counterpart while maintaining similar levels of accuracy. Our results represent
first steps toward designing template-fitting photo-z approaches limited mainly
by memory constraints rather than computation time.Comment: 14 pages, 8 figures; submitted to MNRAS; comments welcom
A dynamical dark energy model with a given luminosity distance
It is assumed that the current cosmic acceleration is driven by a scalar
field, the Lagrangian of which is a function of the kinetic term only, and that
the luminosity distance is a given function of the red-shift. Upon comparison
with Baryon Acoustic Oscillations (BAOs) and Cosmic Microwave Background (CMB)
data the parameters of the models are determined, and then the time evolution
of the scalar field is determined by the dynamics using the cosmological
equations. We find that the solution is very different than the corresponding
solution when the non-relativistic matter is ignored, and that the universe
enters the acceleration era at larger red-shift compared to the standard
model.Comment: 4 pages, 3 figures, accepted for publication in GER
Constraints on perfect fluid and scalar field dark energy models from future redshift surveys
We discuss the constraints that future photometric and spectroscopic redshift
surveys can put on dark energy through the baryon oscillations of the power
spectrum. We model the dark energy either with a perfect fluid or a scalar
field and take into account the information contained in the linear growth
function. We show that the growth function helps to break the degeneracy in the
dark energy parameters and reduce the errors on roughly by 30% making
more appealing multicolor surveys based on photometric redshifts. We find that
a 200 square degrees spectroscopic survey reaching can constrain
to within and to using photometric redshifts with absolute uncertainty
of 0.02. In the scalar field case we show that the slope of the inverse
power-law potential for dark energy can be constrained to
(spectroscopic redshifts) or (photometric redshifts), i.e.
better than with future ground-based supernovae surveys or CMB data.Comment: 27 pages, submitted to MNRA
Evidence for a Z < 8 Origin of the Source Subtracted Near Infrared Background
This letter extends our previous fluctuation analysis of the near infrared
background at 1.6 microns to the 1.1 micron (F110W) image of the Hubble Ultra
Deep field. When all detectable sources are removed the ratio of fluctuation
power in the two images is consistent with the ratio expected for faint, z<8,
sources, and is inconsistent with the expected ratio for galaxies with z>8. We
also use numerically redshifted model galaxy spectral energy distributions for
50 and 10 million year old galaxies to predict the expected fluctuation power
at 3.6 microns and 4.5 microns to compare with recent Spitzer observations. The
predicted fluctuation power for galaxies at z = 0-12 matches the observed
Spitzer fluctuation power while the predicted power for z>13 galaxies is much
higher than the observed values. As was found in the 1.6 micron (F160W)
analysis the fluctuation power in the source subtracted F110W image is two
orders of magnitude below the power in the image with all sources present. This
leads to the conclusion that the 0.8--1.8 micron near infrared background is
due to resolved galaxies in the redshift range z<8, with the majority of power
in the redshift range of 0.5--1.5.Comment: Accepted for publication in the Astrophysical Journa
Coulomb Drag in the Extreme Quantum Limit
Coulomb drag resulting from interlayer electron-electron scattering in double
layer 2D electron systems at high magnetic field has been measured. Within the
lowest Landau level the observed drag resistance exceeds its zero magnetic
value by factors of typically 1000. At half-filling of the lowest Landau level
in each layer (nu = 1/2) the data suggest that our bilayer systems are much
more strongly correlated than recent theoretical models based on perturbatively
coupled composite fermion metals.Comment: 4 pages, 4 figure
- …