2,858 research outputs found

    Complete Supersymmetric Quantum Mechanics of Magnetic Monopoles in N=4 SYM Theory

    Get PDF
    We find the most general low energy dynamics of 1/2 BPS monopoles in the N=4 supersymmetric Yang-Mills theories (SYM) when all six adjoint Higgs expectation values are turned on. When only one Higgs is turned on, the Lagrangian is purely kinetic. When all six are turned on, however, this moduli space dynamics is augmented by five independent potential terms, each in the form of half the squared norm of a Killing vector field on the moduli space. A generic stationary configuration of the monopoles can be interpreted as stable non BPS dyons, previously found as non-planar string webs connecting D3-branes. The supersymmetric extension is also found explicitly, and gives the complete quantum mechanics of monopoles in N=4 SYM theory. We explore its supersymmetry algebra.Comment: Errors in the SUSY algebra corrected. The version to appear in PR

    Counting Yang-Mills Dyons with Index Theorems

    Get PDF
    We count the supersymmetric bound states of many distinct BPS monopoles in N=4 Yang-Mills theories and in pure N=2 Yang-Mills theories. The novelty here is that we work in generic Coulombic vacua where more than one adjoint Higgs fields are turned on. The number of purely magnetic bound states is again found to be consistent with the electromagnetic duality of the N=4 SU(n) theory, as expected. We also count dyons of generic electric charges, which correspond to 1/4 BPS dyons in N=4 theories and 1/2 BPS dyons in N=2 theories. Surprisingly, the degeneracy of dyons is typically much larger than would be accounted for by a single supermultiplet of appropriate angular momentum, implying many supermutiplets of the same charge and the same mass.Comment: 34 pages, 1 figure, LaTe

    Self-organized critical neural networks

    Full text link
    A mechanism for self-organization of the degree of connectivity in model neural networks is studied. Network connectivity is regulated locally on the basis of an order parameter of the global dynamics which is estimated from an observable at the single synapse level. This principle is studied in a two-dimensional neural network with randomly wired asymmetric weights. In this class of networks, network connectivity is closely related to a phase transition between ordered and disordered dynamics. A slow topology change is imposed on the network through a local rewiring rule motivated by activity-dependent synaptic development: Neighbor neurons whose activity is correlated, on average develop a new connection while uncorrelated neighbors tend to disconnect. As a result, robust self-organization of the network towards the order disorder transition occurs. Convergence is independent of initial conditions, robust against thermal noise, and does not require fine tuning of parameters.Comment: 5 pages RevTeX, 7 figures PostScrip

    Fractal and chaotic solutions of the discrete nonlinear Schr\"odinger equation in classical and quantum systems

    Full text link
    We discuss stationary solutions of the discrete nonlinear Schr\"odinger equation (DNSE) with a potential of the ϕ4\phi^{4} type which is generically applicable to several quantum spin, electron and classical lattice systems. We show that there may arise chaotic spatial structures in the form of incommensurate or irregular quantum states. As a first (typical) example we consider a single electron which is strongly coupled with phonons on a 1D1D chain of atoms --- the (Rashba)--Holstein polaron model. In the adiabatic approximation this system is conventionally described by the DNSE. Another relevant example is that of superconducting states in layered superconductors described by the same DNSE. Amongst many other applications the typical example for a classical lattice is a system of coupled nonlinear oscillators. We present the exact energy spectrum of this model in the strong coupling limit and the corresponding wave function. Using this as a starting point we go on to calculate the wave function for moderate coupling and find that the energy eigenvalue of these structures of the wave function is in exquisite agreement with the exact strong coupling result. This procedure allows us to obtain (numerically) exact solutions of the DNSE directly. When applied to our typical example we find that the wave function of an electron on a deformable lattice (and other quantum or classical discrete systems) may exhibit incommensurate and irregular structures. These states are analogous to the periodic, quasiperiodic and chaotic structures found in classical chaotic dynamics

    Layer Features of the Lattice Gas Model for Self-Organized Criticality

    Full text link
    A layer-by-layer description of the asymmetric lattice gas model for 1/f-noise suggested by Jensen [Phys. Rev. Lett. 64, 3103 (1990)] is presented. The power spectra of the lattice layers in the direction perpendicular to the particle flux is studied in order to understand how the white noise at the input boundary evolves, on the average, into 1/f-noise for the system. The effects of high boundary drive and uniform driving force on the power spectrum of the total number of diffusing particles are considered. In the case of nearest-neighbor particle interactions, high statistics simulation results show that the power spectra of single lattice layers are characterized by different βx\beta_x exponents such that βx1.9\beta_x \to 1.9 as one approaches the outer boundary.Comment: LaTeX, figures upon reques

    Multi-photon transitions between energy levels in a current-biased Josephson tunnel junction

    Get PDF
    The escape of a small current-biased Josephson tunnel junction from the zero voltage state in the presence of weak microwave radiation is investigated experimentally at low temperatures. The measurements of the junction switching current distribution indicate the macroscopic quantum tunneling of the phase below a cross-over temperature of T280mKT^{\star} \approx 280 \rm{mK}. At temperatures below TT^{\star} we observe both single-photon and \emph{multi-photon} transitions between the junction energy levels by applying microwave radiation in the frequency range between 10GHz10 \rm{GHz} and 38GHz38 \rm{GHz} to the junction. These observations reflect the anharmonicity of the junction potential containing only a small number of levels.Comment: 4 pages, 5 figure

    Vortex avalanches and self organized criticality in superconducting niobium

    Full text link
    In 1993 Tang proposed [1] that vortex avalanches should produce a self organized critical state in superconductors, but conclusive evidence for this has heretofore been lacking. In the present paper, we report extensive micro-Hall probe data from the vortex dynamics in superconducting niobium, where a broad distribution of avalanche sizes scaling as a power-law for more than two decades is found. The measurements are combined with magneto-optical imaging, and show that over a widely varying magnetic landscape the scaling behaviour does not change, hence establishing that the dynamics of superconducting vortices is a SOC phenomenon.Comment: 3 pages + 4 figures, a reference added, citation typos fixe

    Exact 4-point Scattering Amplitude of the Superconformal Schrodinger Chern-Simons Theory

    Full text link
    We consider the non-relativistic superconformal U(N) X U(N) Chern-Simons theory with level (k,-k) possessing fourteen supersymmetries. We obtain an exact four-point scattering amplitude of the theory to all orders in 1/N and 1/k and prove that the scattering amplitude becomes trivial when k=1 and 2. We confirm this amplitude to one-loop order by using an explicit field theoretic computation and show that the beta function for the contact interaction vanishes to the one-loop order, which is consistent with the quantum conformal invariance of the underlying theory.Comment: 16 page

    Perturbative Analysis of Nonabelian Aharonov-Bohm Scattering

    Full text link
    We perform a perturbative analysis of the nonabelian Aharonov-Bohm problem to one loop in a field theoretic framework, and show the necessity of contact interactions for renormalizability of perturbation theory. Moreover at critical values of the contact interaction strength the theory is finite and preserves classical conformal invariance.Comment: 12 pages in LaTeX, uses epsf.sty, 5 uuencoded Postscript figures sent separately. MIT-CTP-228

    Inelastic diffraction and color-singlet gluon-clusters in high-energy hadron-hadron and lepton-hadron collisions

    Full text link
    It is proposed, that ``the colorless objects'' which manifest themselves in large-rapidity-gap events are color-singlet gluon-clusters due to self-organized criticality (SOC), and that optical-geometrical concepts and methods are useful in examing the space-time properties of such objects. A simple analytical expression for the tt-dependence of the inelastic single diffractive cross section dσ/dtd\sigma/dt (tt is the four-momentum transfer squared) is derived. Comparison with the existing data and predictions for future experiments are presented. The main differences and similarities between the SOC-approach and the ``Partons in the Pomeron (Pomeron and Reggeon)''-approach are discussed.Comment: 12 pages, 2 figure
    corecore