240 research outputs found
Reversible Phospholipid Nanogels: An Alternative Matrix for Tunable High Resolution DNA Sieving with Enhanced Separation Efficiency and Accurate Extended Range Sizing by Capillary Gel Electrophoresis
In an aqueous solution the phospholipids dimyristoyl-sn-glycero-3- phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) self-assemble to form thermo-responsive non-Newtonian fluids (i.e., pseudo-gels) in which small temperature changes of 5-6 °C decrease viscosity dramatically. This characteristic is useful for sieving-based electrophoretic separations (e.g., of DNA), as the high viscosity of linear sieving additives, such as linear polyacrylamide or polyethylene oxide, hinders the introduction and replacement of the sieving agent in microscale channels. While a practical advantage of utilizing phospholipid pseudo-gels for sieving is the ease with which they are introduced into the separation capillary, the separation performance of the material for DNA analyses is exceptional. Capillary electrophoresis separations of DNA are achieved with separation efficiencies ranging from 400,000 to 7,000,000 theoretical plates in a 25 micrometer inner diameter fused silica capillary. Assessment of the phospholipid nanogel with a Ferguson plot yields an apparent pore size of ~31 nm. Under isothermal conditions, Ogston sieving is achieved for DNA fragments smaller than 500 base pairs, whereas reptation-based transport occurs for DNA fragments larger than 500 base pairs. Single base resolution of short tandem repeats relevant to human identification is accomplished with 30 minute separations using traditional capillary electrophoresis instrumentation. Applications that do not require single base resolution are completed with faster separation times. This is demonstrated for a multiplex assay of biallelic single nucleotide polymorphisms relevant to warfarin sensitivity. The thermo-responsive pseudo-gel preparation described here provides a new innovation to sieving based capillary separations. Specific DMPC-DHPC medium is developed to effectively separate and size DNA fragments up to 1,500 base pairs by decreasing the total lipid concentration to 2.5%. A 2.5% phospholipid nanogel generates a resolution of 1% of the DNA fragment size up to 1,500 base pairs. This separation additive is used to evaluate size markers ranging between 200 and 1,500 base pairs in order to distinguish invasive strains of Streptococcus pyogenes and Aspergillus species by harnessing differences in gene sequences of collagen-like proteins in these organisms. For the first time, a reversible stacking gel is integrated in a capillary sieving separation by utilizing the thermally-responsive viscosity of these selfassembled phospholipid preparations. A discontinuous matrix is created that is composed of a cartridge of highly viscous phospholipid assimilated into a separation matrix of low viscosity. DNA sample stacking is facilitated with longer injection times without sacrificing separation efficiency
Theoretical and experimental investigation of solid-state mechanisms for generating coherent radiation in the ultraviolet and X-ray regions Semiannual report, 1 May - 31 Oct. 1968
Solid state mechanism for generating coherent radiation in ultraviolet and X ray region
Space suit
A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space
Theoretical and experimental investigation of solid-state mechanisms for generating coherent radiation in the ultraviolet and X-ray regions Final report, 1 Nov. 1968 - 30 Apr. 1969
Microwave impedance measurements for determining space charge waves in semiconductor
Stochastic evolution of four species in cyclic competition
We study the stochastic evolution of four species in cyclic competition in a
well mixed environment. In systems composed of a finite number of particles
these simple interaction rules result in a rich variety of extinction
scenarios, from single species domination to coexistence between
non-interacting species. Using exact results and numerical simulations we
discuss the temporal evolution of the system for different values of , for
different values of the reaction rates, as well as for different initial
conditions. As expected, the stochastic evolution is found to closely follow
the mean-field result for large , with notable deviations appearing in
proximity of extinction events. Different ways of characterizing and predicting
extinction events are discussed.Comment: 19 pages, 6 figures, submitted to J. Stat. Mec
Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer
The Large Binocular Telescope Interferometer uses a near-infrared camera to
measure the optical path length variations between the two AO-corrected
apertures and provide high-angular resolution observations for all its science
channels (1.5-13 m). There is however a wavelength dependent component to
the atmospheric turbulence, which can introduce optical path length errors when
observing at a wavelength different from that of the fringe sensing camera.
Water vapor in particular is highly dispersive and its effect must be taken
into account for high-precision infrared interferometric observations as
described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this
paper, we describe the new sensing approach that has been developed at the LBT
to measure and monitor the optical path length fluctuations due to dry air and
water vapor separately. After reviewing the current performance of the system
for dry air seeing compensation, we present simultaneous H-, K-, and N-band
observations that illustrate the feasibility of our feedforward approach to
stabilize the path length fluctuations seen by the LBTI nuller.Comment: SPIE conference proceeding
First-light LBT nulling interferometric observations: warm exozodiacal dust resolved within a few AU of eta Corvi
We report on the first nulling interferometric observations with the Large
Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81 - 12.41
um) emission around the nearby main-sequence star eta Crv (F2V, 1-2 Gyr). The
measured source null depth amounts to 4.40% +/- 0.35% over a field-of-view of
140 mas in radius (~2.6\,AU at the distance of eta Corvi) and shows no
significant variation over 35{\deg} of sky rotation. This relatively low null
is unexpected given the total disk to star flux ratio measured by Spitzer/IRS
(~23% across the N' band), suggesting that a significant fraction of the dust
lies within the central nulled response of the LBTI (79 mas or 1.4 AU).
Modeling of the warm disk shows that it cannot resemble a scaled version of the
Solar zodiacal cloud, unless it is almost perpendicular to the outer disk
imaged by Herschel. It is more likely that the inner and outer disks are
coplanar and the warm dust is located at a distance of 0.5-1.0 AU,
significantly closer than previously predicted by models of the IRS spectrum
(~3 AU). The predicted disk sizes can be reconciled if the warm disk is not
centrosymmetric, or if the dust particles are dominated by very small grains.
Both possibilities hint that a recent collision has produced much of the dust.
Finally, we discuss the implications for the presence of dust at the distance
where the insolation is the same as Earth's (2.3 AU).Comment: 9 pages, 6 figures, accepted for publication in Ap
The discontinuous nature of chromospheric activity evolution
Chromospheric activity has been thought to decay smoothly with time and,
hence, to be a viable age indicator. Measurements in solar type stars in open
clusters seem to point to a different conclusion: chromospheric activity
undergoes a fast transition from Hyades level to that of the Sun after about 1
Gyr of main--sequence lifetime and any decaying trend before or after this
transition must be much less significant than the short term variations.Comment: 6 pages, 1 figure, to be published in Astrophysics and Space Scienc
- …