121 research outputs found

    Modulation of CYP1A1 by PKC Inhibitors and TPA Pre-Treatments in MH1C1 Rat Hepatoma Cells Exposed to 3 -Methylcholanthrene

    Get PDF
    Cytochrome P4501A1 (CYP1A1), an enzyme known to metabolize polycyclic aromatic hydrocarbons, is regulated by the aryl hydrocarbon receptor (AhR). The involvement of protein kinase C (PKC) in the regulation of AhR signal transduction pathway, has been widely studied but the role of specific PKC isoform(s) involved in this process it is not well clarified. To study which PKC isoform(s) is implicated in the regulation of CYP1A1, in the poorly tumorigenic MH1C1 rat hepatoma cells, we examined the effects of some PKC pharmacological inhibitors, Calphostin C (CAL), Staurosporine (STA) and H7, and of 12-0-tetradecanoyl phorbol 13-acetate (TPA), a PKC activator, on basal and 3- methylcholanthrene (MC)-induced CYP1A1 protein expression and mediated ethoxyresorufin O-deethylation (EROD) activity. In parallel, the activities of PKC-α, -βI, -δ and -ε isoforms, the most expressed in MH1C1 cells, were monitored. After pre-treatment with CAL, STA and H7, the MC-induced CYP1A1 protein and EROD activity were rapidly reduced with temporal profile similar to the profile of the activity of α and β1 PKC isoforms. Moreover, TPA pre-treatment induced a biphasic effect on EROD activity, and a decline of PKC -βI and -α, in first instance, and -δ and -ε activities later on. These findings clearly show that, in MH1C1 cells, PKC is involved in CYP1A1 regulation and that α and βI classic PKC isoforms play an active role in modulating this process

    Inhibition of the de-myelinating properties of Aicardi-Goutières syndrome lymphocytes by cathepsin D silencing.

    Get PDF
    Molecular mechanisms relating interferon-alpha (IFN-alpha) to brain damage have recently been identified in a microarray analysis of cerebrospinal fluid lymphocytes from patients with Aicardi-Goutières Syndrome (AGS). These findings demonstrate that the inhibition of angiogenesis and the activation of neurotoxic lymphocytes are the major pathogenic mechanisms involved in the brain damage consequent to elevated interferon-alpha levels. Our previous study demonstrated that cathepsin D, a lysosomal aspartyl endopeptidase, is the primary mediator of the neurotoxicity exerted by AGS lymphocytes. Cathepsin D is a potent pro-apoptotic, neurotoxic, and demyelinating protease if it is not properly inhibited by the activities of leukocystatins. In central nervous system white matter, demyelination results from cathepsin over-expression when not balanced by the expression of its inhibitors. In the present study, we used RNA interference to inhibit cathepsin D expression in AGS lymphocytes with the aim of decreasing the neurotoxicity of these cells. Peripheral blood lymphocytes collected from an AGS patient were immortalized and co-cultured with astrocytes in the presence of interferon alpha with or without cathepsin D RNA interference probes. Cathepsin D expression was measured by qPCR, and neurotoxicity was evaluated by microscopy. RNA interference inhibited cathepsin D over-production by 2.6-fold (P<0.01) in AGS lymphocytes cultured in the presence of interferon alpha. AGS lymphocytes treated using RNA interference exhibited a decreased ability to induce neurotoxicity in astrocytes. Such neurotoxicity results in the inhibition of astrocyte growth and the inhibition of the ability of astrocytes to construct web-like aggregates. These results suggest a new strategy for repairing AGS lymphocytes in vitro by inhibiting their ability to induce astrocyte damage and leukodystroph

    PKCδ Sensitizes Neuroblastoma Cells to L-Buthionine-Sulfoximine and Etoposide Inducing Reactive Oxygen Species Overproduction and DNA Damage

    Get PDF
    Neuroblastoma is a type of pediatric cancer. The sensitivity of neuroblastoma (NB) cancer cells to chemotherapy and radiation is inhibited by the presence of antioxidants, such as glutathione (GSH), which is crucial in counteracting the endogenous production of reactive oxygen species (ROS). We have previously demonstrated that cells depleted of GSH undergo apoptosis via oxidative stress and Protein kinase C (PKC) δ activation. In the present study, we transfected PKCδ in NB cells resistant to oxidative death induced by L-buthionine-S,R-sulfoximine (BSO), a GSH-depleting agent. Cell responses, in terms of ROS production, apoptosis and DNA damage were evaluated. Moreover, PKCδ activation was monitored by analyzing the phosphorylation status of threonine 505 residue, carrying out PKC activity assay and investigating the subcellular localization of the kinase. The cell responses obtained in BSO-resistant cells were also compared with those obtained in BSO-sensitive cells subjected to the same experimental protocol. Our results demonstrate, for the first time, that PKCδ induces DNA oxidation and ROS overproduction leading to apoptosis of BSO-resistant NB cells and potentiates the cytotoxic effects induced by BSO in sensitive cells. Moreover, PKCδ overexpression enhances the sensitivity of NB cells to etoposide, a well-characterised drug, commonly used in neuroblastoma therapy. Altogether our data provide evidence of a pro-oxidant role of PKCδ that might be exploited to design new therapeutic strategies aimed at selective killing of cancer cells and overcoming drug resistance. However, it becomes evident that a more detailed understanding of ROS-mediated signaling in cancer cells is necessary for the development of redox-modulated therapeutic approaches
    • …
    corecore