1,160 research outputs found
Experiments towards quantum information with trapped Calcium ions
Ground state cooling and coherent manipulation of ions in an rf-(Paul) trap
is the prerequisite for quantum information experiments with trapped ions. With
resolved sideband cooling on the optical S1/2 - D5/2 quadrupole transition we
have cooled one and two 40Ca+ ions to the ground state of vibration with up to
99.9% probability. With a novel cooling scheme utilizing electromagnetically
induced transparency on the S1/2 - P1/2 manifold we have achieved simultaneous
ground state cooling of two motional sidebands 1.7 MHz apart. Starting from the
motional ground state we have demonstrated coherent quantum state manipulation
on the S1/2 - D5/2 quadrupole transition at 729 nm. Up to 30 Rabi oscillations
within 1.4 ms have been observed in the motional ground state and in the n=1
Fock state. In the linear quadrupole rf-trap with 700 kHz trap frequency along
the symmetry axis (2 MHz in radial direction) the minimum ion spacing is more
than 5 micron for up to 4 ions. We are able to cool two ions to the ground
state in the trap and individually address the ions with laser pulses through a
special optical addressing channel.Comment: Proceedings of the ICAP 2000, Firenz
Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps
We investigate single ions of in Paul traps for quantum
information processing. Superpositions of the S electronic ground state
and the metastable D state are used to implement a qubit. Laser light
on the S D transition is used for the
manipulation of the ion's quantum state. We apply sideband cooling to the ion
and reach the ground state of vibration with up to 99.9% probability. Starting
from this Fock state , we demonstrate coherent quantum state
manipulation. A large number of Rabi oscillations and a ms-coherence time is
observed. Motional heating is measured to be as low as one vibrational quantum
in 190 ms. We also report on ground state cooling of two ions.Comment: 12 pages, 6 figures. submitted to Journal of Modern Optics, Special
Issue on Quantum Optics: Kuehtai 200
Vision and Foraging in Cormorants: More like Herons than Hawks?
Background
Great cormorants (Phalacrocorax carbo L.) show the highest known foraging yield for a marine predator and they are often perceived to be in conflict with human economic interests. They are generally regarded as visually-guided, pursuit-dive foragers, so it would be expected that cormorants have excellent vision much like aerial predators, such as hawks which detect and pursue prey from a distance. Indeed cormorant eyes appear to show some specific adaptations to the amphibious life style. They are reported to have a highly pliable lens and powerful intraocular muscles which are thought to accommodate for the loss of corneal refractive power that accompanies immersion and ensures a well focussed image on the retina. However, nothing is known of the visual performance of these birds and how this might influence their prey capture technique.
Methodology/Principal Findings
We measured the aquatic visual acuity of great cormorants under a range of viewing conditions (illuminance, target contrast, viewing distance) and found it to be unexpectedly poor. Cormorant visual acuity under a range of viewing conditions is in fact comparable to unaided humans under water, and very inferior to that of aerial predators. We present a prey detectability model based upon the known acuity of cormorants at different illuminances, target contrasts and viewing distances. This shows that cormorants are able to detect individual prey only at close range (less than 1 m).
Conclusions/Significance
We conclude that cormorants are not the aquatic equivalent of hawks. Their efficient hunting involves the use of specialised foraging techniques which employ brief short-distance pursuit and/or rapid neck extension to capture prey that is visually detected or flushed only at short range. This technique appears to be driven proximately by the cormorant's limited visual capacities, and is analogous to the foraging techniques employed by herons
A white-light trap for Bose-Einstein condensates
We propose a novel method for trapping Bose-condensed atoms using a
white-light interference fringe. Confinement frequencies of tens of kHz can be
achieved in conjunction with trap depths of only a few micro-K. We estimate
that lifetimes on the order of 10 s can be achieved for small numbers of atoms.
The tight confinement and shallow depth permit tunneling processes to be used
for studying interaction effects and for applications in quantum information.Comment: 10 pages with 3 figure
Conditional quantum logic using two atomic qubits
In this paper we propose and analyze a feasible scheme where the detection of
a single scattered photon from two trapped atoms or ions performs a conditional
unitary operation on two qubits. As examples we consider the preparation of all
four Bell states, the reverse operation that is a Bell measurement, and a CNOT
gate. We study the effect of atomic motion and multiple scattering, by
evaluating Bell inequalities violations, and by calculating the CNOT gate
fidelity.Comment: 23 pages, 8 figures in 11 file
Virtual reality rehabilitation system for neuropathic pain and motor dysfunction in spinal cord injury patients
Spinal cord injury (SCI) causes both lower limb motor dysfunction and associated neuropathic pain. Although these two conditions share related cortical mechanisms, different interventions are currently used to treat each condition. With intensive training using entertaining virtual reality (VR) scenarios, it may be possible to reshape cortical networks thereby reducing neuropathic pain and improving motor function. We have created the first VR training system combining action observation and execution addressing lower limb function in incomplete SCI (iSCI) patients. A particular feature of the system is the use of size-adjustable shoes with integrated motion sensors. A pilot single-case clinical study is currently being conducted on six iSCI patients. Two patients tested to date were highly motivated to perform and reported improved physical well-being. They improved in playing skill and in controlling the virtual lower limbs. There were post-intervention indications of neuropathic pain decrease, muscle strength increase, faster walking speed and improved performance on items relevant for ambulation. In addition functional MRI before and after treatment revealed a decreased activation pattern. We interpret this result as an improvement of neuronal synergies for this task. These results suggest that our VR system may be beneficial for both reducing neuropathic pain and improving motor function in iSCI patients
Vibrotactile pedals : provision of haptic feedback to support economical driving
The use of haptic feedback is currently an underused modality in the driving environment, especially with respect to vehicle manufacturers. This exploratory study evaluates the effects of a vibrotactile (or haptic) accelerator pedal on car driving performance and perceived workload using a driving simulator. A stimulus was triggered when the driver exceeded a 50% throttle threshold, past which is deemed excessive for economical driving. Results showed significant decreases in mean acceleration values, and maximum and excess throttle use when the haptic pedal was active as compared to a baseline condition. As well as the positive changes to driver behaviour, subjective workload decreased when driving with the haptic pedal as compared to when drivers were simply asked to drive economically. The literature suggests that the haptic processing channel offers a largely untapped resource in the driving environment, and could provide information without overloading the other attentional resource pools used in driving
Studies of Vibrational Properties in Ga Stabilized d-Pu by Extended X-ray Absorption Fine Structure
Temperature dependent extended x-ray absorption fine structure (EXAFS)
spectra were measured for a 3.3 at% Ga stabilized Pu alloy over the range T= 20
- 300 K at both the Ga K-edge and the Pu L_III-edge. The temperature dependence
of the pair-distance distribution widths, \sigma(T) was accurately modeled
using a correlated-Debye model for the lattice vibrational properties,
suggesting Debye-like behavior in this material. We obtain pair- specific
correlated-Debye temperatures, \Theta_cD, of 110.7 +/- 1.7 K and 202.6 +/- 3.7
K, for the Pu-Pu and Ga-Pu pairs, respectively. These results represent the
first unambiguous determination of Ga-specific vibrational properties in PuGa
alloys, and indicate the Ga-Pu bonds are significantly stronger than the Pu-Pu
bonds. This effect has important implications for lattice stabilization
mechanisms in these alloys.Comment: 7 pages, 4 figures, Phys. Rev. B in pres
- …