8,099 research outputs found

    Infrared properties of SiC particles

    Get PDF
    We present basic laboratory infrared data on a large number of SiC particulate samples, which should be of great value for the interpretation of the 11.3 micron feature observed in the spectra of carbon-rich stars. The laboratory spectra show a wide variety of the SiC phonon features in the 10-13 micron wavelength range, both in peak wavelength and band shape. The main parameters determining the band profile are morphological factors as grain size and shape and, in many cases, impurities in the material. We discovered the interesting fact that free charge carriers, generated e.g. by nitrogen doping, are a very common characteristics of many SiC particle samples. These free charge carriers produce very strong plasmon absorption in the near and middle infrared, which may also heavily influence the 10-13 micron feature profile via plasmon-phonon coupling. We also found that there is no systematic dependence of the band profile on the crystal type (alpha- vs. beta-SiC). This is proven both experimentally and by theoretical calculations based on a study of the SiC phonon frequencies. Further, we give optical constants of amorphous SiC. We discuss the implications of the new laboratory results for the interpretation of the spectra of carbon stars.Comment: 17 pages, 12 figures. To appear in A&

    Efficiency of thermal relaxation by radiative processes in protoplanetary discs: constraints on hydrodynamic turbulence

    Full text link
    Hydrodynamic, non-magnetic instabilities can provide turbulent stress in the regions of protoplanetary discs, where the MRI can not develop. The induced motions influence the grain growth, from which formation of planetesimals begins. Thermal relaxation of the gas constrains origins of the identified hydrodynamic sources of turbulence in discs. We estimate the radiative relaxation timescale of temperature perturbations and study the dependence of this timescale on the perturbation wavelength, the location within the disc, the disc mass, and the dust-to-gas mass ratio. We then apply thermal relaxation criteria to localise modes of the convective overstability, the vertical shear instability, and the zombie vortex instability. Our calculations employed the latest tabulated dust and gas mean opacities and we account for the collisional coupling to the emitting species. The relaxation criterion defines the bulk of a typical T Tauri disc as unstable to the development of linear hydrodynamic instabilities. The midplane is unstable to the convective overstability from at most 2\mbox{ au} and up to 40\mbox{ au}, as well as beyond 140\mbox{ au}. The vertical shear instability can develop between 15\mbox{ au} and 180\mbox{ au}. The successive generation of (zombie) vortices from a seeded noise can work within the inner 0{.}8\mbox{ au}. Dynamic disc modelling with the evolution of dust and gas opacities is required to clearly localise the hydrodynamic turbulence, and especially its non-linear phase.Comment: 13 pages, 8 figure

    The Onset of Planet Formation in Brown Dwarf Disks

    Full text link
    The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub-micron-sized dust grains accompanied by dust settling toward the disk mid-plane. Here we present infrared spectra of disks around brown dwarfs and brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.Comment: Published in Science 2005, vol 310, 834; 3 pages in final format, 4 figures + 8 pages Supporting Online Material. For final typeset, see http://www.sciencemag.org/cgi/content/abstract/310/5749/834?eto

    Signatures of Planets in Spatially Unresolved Disks

    Full text link
    Main sequence stars are commonly surrounded by debris disks, composed of cold dust continuously replenished by a reservoir of undetected dust-producing planetesimals. In a planetary system with a belt of planetesimals (like the Solar System's Kuiper Belt) and one or more interior giant planets, the trapping of dust particles in the mean motion resonances with the planets can create structure in the dust disk, as the particles accumulate at certain semimajor axes. Sufficiently massive planets may also scatter and eject dust particles out of a planetary system, creating a dust depleted region inside the orbit of the planet. In anticipation of future observations of spatially unresolved debris disks with the Spitzer Space Telescope, we are interested in studying how the structure carved by planets affects the shape of the disk's spectral energy distribution (SED), and consequently if the SED can be used to infer the presence of planets. We numerically calculate the equilibrium spatial density distributions and SEDs of dust disks originated by a belt of planetesimals in the presence of interior giant planets in different planetary configurations, and for a representative sample of chemical compositions. The dynamical models are necessary to estimate the enhancement of particles near the mean motion resonances with the planets, and to determine how many particles drift inside the planet's orbit. Based on the SEDs and predicted Spitzer\it{Spitzer} colors we discuss what types of planetary systems can be distinguishable from one another and the main parameter degeneracies in the model SEDs.Comment: 40 pages (pre-print form), including 16 figures. Published in ApJ 200

    Resolving the chemical substructure of Orion-KL

    Full text link
    The Kleinmann-Low nebula in Orion (Orion-KL) is the nearest example of a high-mass star-forming environment. For the first time, we complemented 1.3 mm Submillimeter Array (SMA) interferometric line survey with IRAM 30 m single-dish observations of the Orion-KL region. Covering a 4 GHz bandwidth in total, this survey contains over 160 emission lines from 20 species (25 isotopologues), including 11 complex organic molecules (COMs). At a spatial resolution of 1200 AU, the continuum substructures are resolved. Extracting the spectra from individual substructures and providing the intensity-integrated distribution map for each species, we studied the small-scale chemical variations in this region. Our main results are: (1) We identify lines from the low-abundance COMs CH3COCH3 and CH3CH2OH, as well as tentatively detect CH3CHO and long carbon-chains C6H and HC7N. (2) We find that while most COMs are segregated by type, peaking either towards the hot core (e.g., N-bearing species) or the compact ridge (e.g., O-bearing species like HCOOCH3 and CH3OCH3), while the distributions of others do not follow this segregated structure (e.g., CH3CH2OH, CH3OH, CH3COCH3). (3) We find a second velocity component of HNCO, SO2, 34SO2, and SO lines, which may be associated with a strong shock event in the low-velocity outflow. (4) Temperatures and molecular abundances show large gradients between central condensations and the outflow regions, illustrating a transition between hot molecular core and shock-chemistry dominated regimes. Our observations of spatially resolved chemical variations in Orion-KL provide the nearest reference source for hot molecular core and outflow chemistry, which will be an important example for interpreting the chemistry of more distant HMSFRs.Comment: 51 pages, 17 figures, accepted on 12 March 2015 Dashed lines in Figure 10 of the published paper was missin

    Dust rings and filaments around the isolated young star V1331 Cygni

    Get PDF
    We characterize the small and large scale environment of the young star V1331 Cygni with high resolution HST/WFPC2 and Digitized Sky Survey images. In addition to a previously known outer dust ring (~30'' in diameter), the HST/WFPC2 scattered light image reveals an inner dust ring for the first time. This ring has a maximum radius of 6.5'' and is possibly related to a molecular envelope. Large-scale optical images show that V1331 Cyg is located at the tip of a long dust filament linking it to the dark cloud LDN 981. We discuss the origin of the observed dust morphology and analyze the object's relation to its parent dark cloud LDN 981. Finally, based on recent results from the literature, we investigate the properties of V1331 Cyg and conclude that in its current state the object does not show suffcient evidence to be characterized as an FU Ori object.Comment: 15 pages ApJ preprint style including 3 figures, accepted for publication in ApJ (Feb. 2007

    Grazing Alfalfa

    Get PDF
    Alfalfa is a high yielding, high quality, deep-rooted, versatile forage legume well adapted throughout the U.S. Gains per animal and per acre can be excellent with acceptable stand persistence when present technology is used. Is grazing alfalfa right for everyone? No. Is grazing alfalfa right for you? Only you can answer that question. This presentation attempts to give you information that will hopefully help you with that answer

    Producing Quality Alfalfa Hay

    Get PDF
    Hay is one of the most versatile of stored forages in that (1) it can be kept for long periods of time with little loss of nutrients if protected from weather; (2) a large number of crops can be successfully used for hay production; (3) it can be produced and fed in small or large amounts; (4) it can be harvested, stored and fed by hand or the production and feeding can be completely mechanized; and (5) hay can supply most nutrients needed by many classes of livestock. Hay is, therefore, the most commonly used stored feed on most farms

    Alfalfa Hay: Quality Makes the Difference

    Get PDF
    Alfalfa Queen of the Forage Crops is one of the most important forage legumes grown in the U.S. It can be grown over a wide range of soil and climatic conditions, it has the highest yield potential and the highest feeding values of all adapted perennial forage legumes. Alfalfa is a versatile crop which can be used for pasture, hay, silage, green-chop, soil improvements and · human consumption (sprouts, etc.)

    Buying and Selling Alfalfa Hay

    Get PDF
    Alfalfa hay is an important agricultural product. Although often fed on the farms where it is produced, much alfalfa hay is also sold as a cash crop. It often constitutes a major source of income for those who sell it, or a major expense for those who buy it. Such transactions involve billions of dollars nationwide each year
    corecore