224 research outputs found

    A need for direct contact with particle surfaces in the bacterial oxidation of covellite in the absence of a chemical lixiviant

    Get PDF
    For bio-leaching, direct contact is needed between Thiobacillus ferrooxidans and covellite (CuS) which oxidizes by a direct mechanism.Centro de TecnologĂ­a de Recursos Minerales y CerĂĄmic

    Towards accurate solvation free energies of large biological systems

    Get PDF
    Continuum solvation models like PCM or COSMO are the standard tool to calculate solvation free energies in a quantum level, but have been typically limited to small biological molecules due to its large computational cost. Recently, a new implementation of COSMO based on a domain decomposition strategy (ddCOSMO) [1] has been presented, which speeds up calculations by several orders of magnitude, thus paving the way for its application to very large systems. Here, we report the parameterization of ddCOSMO to the prediction of hydration free energies based on the MST solvation model developed in Barcelona, [2][3]. The parameterization is based on the PM6 semi-empirical Hamiltonian, on a set of over 200 experimental hydration free energies. The new model opens the way to the accurate prediction of hydration free energies of very large biomolecules, thus going beyond the usual classical MM-PBSA or MM-GBSA approaches

    Three-Terminal Junctions operating as mixers, frequency doublers and detectors: A broad-band frequency numerical and experimental study at room temperature

    Get PDF
    The frequency response of nanometric T- and Y-shaped three-terminal junctions (TTJs) is investigated experimentally and numerically. In virtue of the parabolic down-bending of the output voltage of the central branch obtained at room temperature under a push-pull fashion input, we analyze: the low-frequency performance (<1 MHz) of TTJs operating as mixers, their RF capability as doublers up to 4 GHz and detection at 94 GHz. Special attention is paid to the impedance matching and cut-off frequency of the measurement set-up. The numerical study is done by means of Monte Carlo simulations. We illustrate the intrinsic functionality of the device as frequency doubler or rectifier up to THz. The role of the width of the central branch on the highfrequency response is also explored, finding different cut-off frequencies for doubling and detection as a consequence of the diverse working principles of both mechanisms and the particular geometry of the TTJs.ROOTHz (FP7-243845

    Particle-unstable nuclei in the Hartree-Fock theory

    Get PDF
    Ground state energies and decay widths of particle unstable nuclei are calculated within the Hartree-Fock approximation by performing a complex scaling of the many-body Hamiltonian. Through this transformation, the wave functions of the resonant states become square integrable. The method is implemented with Skyrme effective interactions. Several Skyrme parametrizations are tested on four unstable nuclei: 10He, 12O, 26O and 28O.Comment: 5 pages, LaTeX, submitted to Phys. Rev. Let

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    Continuum solvation models: Dissecting the free energy of solvation

    Get PDF
    The most usual self-consistent reaction field (SCRF) continuum models for the description of solvation within the quantum mechanical (QM) framework are reviewed, trying to emphasize their common roots as well as the inherent approximations assumed in the calculation of the free energy of solvation. Particular attention is also paid to the specific features involved in the development of current state-of-the-art QM SCRF continuum models. This is used to discuss the need to maintain a close correspondence between each SCRF formalism and the specific details entailing its parametrization, as well as the need to be cautious in analyzing the balance between electrostatic and non-electrostatic contributions to the solvation free energy between different SCRF models. Finally, special emphasis is given to the post-processing of the free energy of solvation to derive parameters providing a compact picture of the ability of a molecule to interact with different solvents, which can be of particular interest in biopharmaceutical studies

    Reduced dielectric screening and enhanced energy transfer in single and few-layer MoS2

    Full text link
    We report highly efficient non-radiative energy transfer from cadmium selenide (CdSe) quantum dots to monolayer and few-layer molybdenum disulfide (MoS2). The quenching of the donor quantum dot photoluminescence increases as the MoS2 flake thickness decreases, with the highest efficiency (>95%) observed for monolayer MoS2. This counterintuitive result arises from reduced dielectric screening in thin layer semiconductors having unusually large permittivity and a strong in-plane transition dipole moment, as found in MoS2. Excitonic energy transfer between a 0D emitter and a 2D absorber is fundamentally interesting and enables a wide range of applications including broadband optical down-conversion, optical detection, photovoltaic sensitization, and color shifting in light-emitting devices.Comment: 14 pages, 4 figure
    • 

    corecore