1,418 research outputs found
Time dependent numerical model for the emission of radiation from relativistic plasma
We describe a numerical model constructed for the study of the emission of
radiation from relativistic plasma under conditions characteristic, e.g., to
gamma-ray bursts (GRB's) and active galactic nuclei (AGN's). The model solves
self consistently the kinetic equations for e^\pm and photons, describing
cyclo-synchrotron emission, direct Compton and inverse Compton scattering, pair
production and annihilation, including the evolution of high energy
electromagnetic cascades. The code allows calculations over a wide range of
particle energies, spanning more than 15 orders of magnitude in energy and time
scales. Our unique algorithm, which enables to follow the particle
distributions over a wide energy range, allows to accurately derive spectra at
high energies, >100 \TeV. We present the kinetic equations that are being
solved, detailed description of the equations describing the various physical
processes, the solution method, and several examples of numerical results.
Excellent agreement with analytical results of the synchrotron-SSC model is
found for parameter space regions in which this approximation is valid, and
several examples are presented of calculations for parameter space regions
where analytic results are not available.Comment: Minor changes; References added, discussion on observational status
added. Accepted for publication in Ap.
Thermal detector model for cryogenic composite detectors for the dark matter experiments CRESST and EURECA
The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers)
and the EURECA (European Underground Rare Event Calorimeter Array) experiments
are direct dark matter search experiments where cryogenic detectors are used to
detect spin-independent, coherent WIMP (Weakly Interacting Massive
Particle)-nucleon scattering events by means of the recoil energy. The
cryogenic detectors use a massive single crystal as absorber which is equipped
with a TES (transition edge sensor) for signal read-out. They are operated at
mK-temperatures. In order to enable a mass production of these detectors, as
needed for the EURECA experiment, a so-called composite detector design (CDD)
that allows decoupling of the TES fabrication from the optimization procedure
of the absorber single-crystal was developed and studied. To further
investigate, understand and optimize the performance of composite detectors a
detailed thermal detector model which takes into account the CDD has been
developed.Comment: To appear in Journal of Physics: Conference Series; Proceedings of
Neutrino 2008, Christchurch, New Zealan
- …