1,314 research outputs found

    Supersymmetric Extension of the Minimal Dark Matter Model

    Full text link
    The minimal dark matter model is given a supersymmetric extension. A super SU(2)L quintuplet is introduced with its fermionic neutral component still being the dark matter, the dark matter particle mass is about 19.7 GeV. Mass splitting among the quintplet due to supersymmetry particles is found to be negligibly small compared to the electroweak corrections. Other properties of this supersymmetry model are studied, it has the solutions to the PAMELA and Fermi-LAT anomaly, the predictions in higher energies need further experimental data to verify.Comment: 14 pages, 7 figures, accepted for publication in Chinese Physics C, typos correcte

    Sustainable development of Sicily east coast

    Get PDF
    Sicily has an unusual coastal reality: widespread illegal building, industrial pollution, abandonment, under-valued unique sites with strong natural, tourist, cultural and economic potential. A common topic nowadays is the integrated management of the coastal area for a sustainable development. The aspects to consider are many: administrative, managerial, juridical, political, scientific, planning and so on. These aspects will be important both in the realization of operational interventions for the recovery of degraded areas and of eco-compatible planning. It will be necessary to tie the economic development to the maintenance of the environment according to the recent directives of the European Union that point out - in the principles of sustainable development - the guidelines for community politics. In this paper we will focus on the problems of the eastern Sicilian coastal zone (with particular attention paid to coastal protection and port/harbour management) and the opportunities that marine tourism can offer to local development in general

    The Centre-Periphery Dialectics in Eastern Sicily Retail System. An Exploratory Research

    Get PDF
    This paper aims at scrutinizing from an historical perspective the deep trans-formations shaped by retail spaces and new consumption patterns challenging long-entrenched dichotomies, such as the centre-periphery one. In particular, the exploratory research explores the territorial reconfiguration of the main Eastern Sicily metropol-itan areas, Catania and Messina, from the lens of the retail geography, namely after the diffusion of new suburban retail formats which have completely upset deeply-rooted relations between urban core and suburban rings

    Thermal decoupling and the smallest subhalo mass in dark matter models with Sommerfeld-enhanced annihilation rates

    Full text link
    We consider dark matter consisting of weakly interacting massive particles (WIMPs) and revisit in detail its thermal evolution in the early universe, with a particular focus on models where the annihilation rate is enhanced by the Sommerfeld effect. After chemical decoupling, or freeze-out, dark matter no longer annihilates but is still kept in local thermal equilibrium due to scattering events with the much more abundant standard model particles. During kinetic decoupling, even these processes stop to be effective, which eventually sets the scale for a small-scale cutoff in the matter density fluctuations. Afterwards, the WIMP temperature decreases more quickly than the heat bath temperature, which causes dark matter to reenter an era of annihilation if the cross-section is enhanced by the Sommerfeld effect. Here, we give a detailed and self-consistent description of these effects. As an application, we consider the phenomenology of simple leptophilic models that have been discussed in the literature and find that the relic abundance can be affected by as much two orders of magnitude or more. We also compute the mass of the smallest dark matter subhalos in these models and find it to be in the range of about 10^{-10} to 10 solar masses; even much larger cutoff values are possible if the WIMPs couple to force carriers lighter than about 100 MeV. We point out that a precise determination of the cutoff mass allows to infer new limits on the model parameters, in particular from gamma-ray observations of galaxy clusters, that are highly complementary to existing constraints from g-2 or beam dump experiments.Comment: minor changes to match published versio

    PAMELA and FERMI-LAT limits on the neutralino-chargino mass degeneracy

    Full text link
    Searches for Dark Matter (DM) particles with indirect detection techniques have reached important milestones with the precise measurements of the anti-proton and gamma-ray spectra, notably by the PAMELA and FERMI-LAT experiments. While the gamma-ray results have been used to test the thermal Dark Matter hypothesis and constrain the Dark Matter annihilation cross section into Standard Model (SM) particles, the anti-proton flux measured by the PAMELA experiment remains relatively unexploited. Here we show that the latter can be used to set a constraint on the neutralino-chargino mass difference. To illustrate our point we use a Supersymmetric model in which the gauginos are light, the sfermions are heavy and the Lightest Supersymmetric Particle (LSP) is the neutralino. In this framework the W^+ W^- production is expected to be significant, thus leading to large anti-proton and gamma-ray fluxes. After determining a generic limit on the Dark Matter pair annihilation cross section into W^+ W^- from the anti-proton data only, we show that one can constrain scenarios in which the neutralino-chargino mass difference is as large as ~ 20 GeV for a mixed neutralino (and intermediate choices of the anti-proton propagation scheme). This result is consistent with the limit obtained by using the FERMI-LAT data. As a result, we can safely rule out the pure wino neutralino hypothesis if it is lighter than 450 GeV and constitutes all the Dark Matter.Comment: 22page
    • …
    corecore