118 research outputs found

    Spectroscopic evidence for strong correlations between local superconducting gap and local Altshuler-Aronov density-of-states suppression in ultrathin NbN films

    Full text link
    Disorder has different profound effects on superconducting thin films. For a large variety of materials, increasing disorder reduces electronic screening which enhances electron-electron repulsion. These fermionic effects lead to a mechanism described by Finkelstein: when disorder combined to electron-electron interactions increases, there is a global decrease of the superconducting energy gap Δ\Delta and of the critical temperature TcT_c, the ratio Δ\Delta/kBTck_BT_c remaining roughly constant. In addition, in most films an emergent granularity develops with increasing disorder and results in the formation of inhomogeneous superconducting puddles. These gap inhomogeneities are usually accompanied by the development of bosonic features: a pseudogap develops above the critical temperature TcT_c and the energy gap Δ\Delta starts decoupling from TcT_c. Thus the mechanism(s) driving the appearance of these gap inhomogeneities could result from a complicated interplay between fermionic and bosonic effects. By studying the local electronic properties of a NbN film with scanning tunneling spectroscopy (STS) we show that the inhomogeneous spatial distribution of Δ\Delta is locally strongly correlated to a large depletion in the local density of states (LDOS) around the Fermi level, associated to the Altshuler-Aronov effect induced by strong electronic interactions. By modelling quantitatively the measured LDOS suppression, we show that the latter can be interpreted as local variations of the film resistivity. This local change in resistivity leads to a local variation of Δ\Delta through a local Finkelstein mechanism. Our analysis furnishes a purely fermionic scenario explaining quantitatively the emergent superconducting inhomogeneities, while the precise origin of the latter remained unclear up to now.Comment: 11 pages, 4 figure

    Confinement of superconducting fluctuations due to emergent electronic inhomogeneities

    Full text link
    The microscopic nature of an insulating state in the vicinity of a superconducting state, in the presence of disorder, is a hotly debated question. While the simplest scenario proposes that Coulomb interactions destroy the Cooper pairs at the transition, leading to localization of single electrons, an alternate possibility supported by experimental observations suggests that Cooper pairs instead directly localize. The question of the homogeneity, granularity, or possibly glassiness of the material on the verge of this transition is intimately related to this fundamental issue. Here, by combining macroscopic and nano-scale studies of superconducting ultrathin NbN films, we reveal nanoscopic electronic inhomogeneities that emerge when the film thickness is reduced. In addition, while thicker films display a purely two-dimensional behaviour in the superconducting fluctuations, we demonstrate a zero-dimensional regime for the thinner samples precisely on the scale of the inhomogeneities. Such behavior is somehow intermediate between the Fermi and Bose insulator paradigms and calls for further investigation to understand the way Cooper pairs continuously evolve from a bound state of fermionic objects into localized bosonic entities.Comment: 29 pages 9 figure

    Photometric characterization of exoplanets using angular and spectral differential imaging

    Full text link
    The direct detection of exoplanets has been the subject of intensive research in the recent years. Data obtained with future high-contrast imaging instruments optimized for giant planets direct detection are strongly limited by the speckle noise. Specific observing strategies and data analysis methods, such as angular and spectral differential imaging, are required to attenuate the noise level and possibly detect the faint planet flux. Even though these methods are very efficient at suppressing the speckles, the photometry of the faint planets is dominated by the speckle residuals. The determination of the effective temperature and surface gravity of the detected planets from photometric measurements in different bands is then limited by the photometric error on the planet flux. In this work we investigate this photometric error and the consequences on the determination of the physical parameters of the detected planets. We perform detailed end-to-end simulation with the CAOS-based Software Package for SPHERE to obtain realistic data representing typical observing sequences in Y, J, H and Ks bands with a high contrast imager. The simulated data are used to measure the photometric accuracy as a function of contrast for planets detected with angular and spectral+angular differential methods. We apply this empirical accuracy to study the characterization capabilities of a high-contrast differential imager. We show that the expected photometric performances will allow the detection and characterization of exoplanets down to the Jupiter mass at angular separations of 1.0" and 0.2" respectively around high mass and low mass stars with 2 observations in different filter pairs. We also show that the determination of the planets physical parameters from photometric measurements in different filter pairs is essentialy limited by the error on the determination of the surface gravity.Comment: 13 pages, 7 figures, 4 tables. Accepted for publication in MNRA

    Shadows cast on the transition disk of HD 135344B. Multiwavelength VLT/SPHERE polarimetric differential imaging

    Get PDF
    The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. We study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in R- and I-band and with IRDIS in Y- and J-band. The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large aggregate dust grains in the disk surface. Part of the the non-azimuthal polarization signal in the Uphi image of the J-band observation could be the result of multiple scattering in the disk. The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions.Comment: Accepted for publication in A&A, 20 pages, 15 figure

    Exoplanet characterization with long slit spectroscopy

    Full text link
    Extrasolar planets observation and characterization by high contrast imaging instruments is set to be a very important subject in observational astronomy. Dedicated instruments are being developed to achieve this goal with very high efficiency. In particular, full spectroscopic characterization of low temperature planetary companions is an extremely important milestone. We present a new data analysis method for long slit spectroscopy (LSS) with coronagraphy, which allows characterization of planetary companions of low effective temperature. In a speckle-limited regime, this method allows an accurate estimation and subtraction of the scattered starlight, to extract a clean spectrum of the planetary companion. We performed intensive LSS simulations with IDL/CAOS to obtain realistic spectra of low (R=35) and medium (R=400) resolution in the J, H, and K bands. The simulated spectra were used to test our method and estimate its performance in terms of contrast reduction and extracted spectra quality. Our simulations are based on a software package dedicated to the development of SPHERE, a second generation instrument for the ESO-VLT. Our method allows a contrast reduction of 0.5 to 2.0 magnitudes compared to the coronagraphic observations. For M0 and G0 stars located at 10 pc, we show that it would lead to the characterization of companions with Teff of 600 K and 900 K respectively, at angular separations of 1.0 as. We also show that errors in the wavelength calibration can produce significant errors in the characterization, and must therefore be minimized as much as possible.Comment: 10 pages, 12 figures, 3 tables, accepted for publication in A&

    VLT/SPHERE deep insight of NGC 3603's core: Segregation or confusion?

    Full text link
    We present new near-infrared photometric measurements of the core of the young massive cluster NGC 3603 obtained with extreme adaptive optics. The data were obtained with the SPHERE instrument mounted on ESO Very Large Telescope, and cover three fields in the core of this cluster. We applied a correction for the effect of extinction to our data obtained in the J and K broadband filters and estimated the mass of detected sources inside the field of view of SPHERE/IRDIS, which is 13.5"x13.5". We derived the mass function (MF) slope for each spectral band and field. The MF slope in the core is unusual compared to previous results based on Hubble space telescope (HST) and very large telescope (VLT) observations. The average slope in the core is estimated as -1.06^{+0.26}_{-0.26} for the main sequence stars with 3.5 Msun < M < 120 Msun.Thanks to the SPHERE extreme adaptive optics, 814 low-mass stars were detected to estimate the MF slope for the pre-main sequence stars with 0.6 Msun< M < 3.5 Msun , Gamma = -0.54^{+0.11}_{-0.11} in the K-band images in two fields in the core of the cluster. For the first time, we derive the mass function of the very core of the NGC 3603 young cluster for masses in the range 0.6 - 120 Msun. Previous studies were either limited by crowding, lack of dynamic range, or a combination of both

    Post conjunction detection of β\beta Pictoris b with VLT/SPHERE

    Get PDF
    With an orbital distance comparable to that of Saturn in the solar system, \bpic b is the closest (semi-major axis \simeq\,9\,au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to \bpic have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters. We aimed at further constraining \bpic b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit. We used SPHERE at the VLT to precisely monitor the orbital motion of beta \bpic b since first light of the instrument in 2014. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6\,au) and prevented further detection. We redetected \bpic b on the northeast side of the disk at a separation of 139\,mas and a PA of 30^{\circ} in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a=9.0±0.5a = 9.0 \pm 0.5 au (1 σ\sigma ), it definitely excludes previously reported possible long orbital periods, and excludes \bpic b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.Comment: accepted by A&

    SPHERE: the exoplanet imager for the Very Large Telescope

    Get PDF
    Observations of circumstellar environments to look for the direct signal of exoplanets and the scattered light from disks has significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing and data processing, together with a consistent global system analysis have enabled a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), are designed to efficiently cover the near-infrared (NIR) range in a single observation for efficient young planet search. The third one, ZIMPOL, is designed for visible (VIR) polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. This suite of three science instruments enables to study circumstellar environments at unprecedented angular resolution both in the visible and the near-infrared. In this work, we present the complete instrument and its on-sky performance after 4 years of operations at the VLT.Comment: Final version accepted for publication in A&
    corecore