703 research outputs found

    Classification of BPS equations in higher dimensions

    Full text link
    We systematically classify all possible Bogomol'nyi-Prasad-Sommerfield (BPS) equations in Euclidean dimension d≤8d\leq8. We discuss symmetries of BPS equations and their connection with the self-dual Yang-Mills equations. Also, we present a general method allowing to obtain the BPS equations in any dimension. In addition, we find all BPS equations in the Minkowski space of dimension d≤6d\leq6 and apply the obtained results to the supersymmetric Yang-Mills theories. In conclusion, we discuss the possibility of using the classification to construct soliton solutions of the low-energy effective theory of the heterotic string.Comment: 31 pages, LaTe

    Anomaly Cancellation in 2+1 dimensions in the presence of a domainwall mass

    Full text link
    A Fermion in 2+1 dimensions, with a mass function which depends on one spatial coordinate and passes through a zero ( a domain wall mass), is considered. In this model, originally proposed by Callan and Harvey, the gauge variation of the effective gauge action mainly consists of two terms. One comes from the induced Chern-Simons term and the other from the chiral fermions, bound to the 1+1 dimensional wall, and they are expected to cancel each other. Though there exist arguments in favour of this, based on the possible forms of the effective action valid far from the wall and some facts about theories of chiral fermions in 1+1 dimensions, a complete calculation is lacking. In this paper we present an explicit calculation of this cancellation at one loop valid even close to the wall. We show that, integrating out the ``massive'' modes of the theory does produce the Chern-Simons term, as appreciated previously. In addition we show that it generates a term that softens the high energy behaviour of the 1+1 dimensional effective chiral theory thereby resolving an ambiguity present in a general 1+1 dimensional theory.Comment: 17 pages, LaTex file, CU-TP-61

    Properties of Intersecting p-branes in Various Dimensions

    Get PDF
    General properties of intersecting extremal p-brane solutions of gravity coupled with dilatons and several different d-form fields in arbitrary space-time dimensions are considered. It is show that heuristically expected properties of the intersecting p-branes follow from the explicit formulae for solutions. In particular, harmonic superposition and S-duality hold for all p-brane solutions. Generalized T-duality takes place under additional restrictions on the initial theory parameters .Comment: 14 pages, RevTeX, misprints are corrected and more Comments are added, information about one of the authors (M.G.I.) available at http://www.geocities.com/CapeCanaveral/Lab/419

    Holographic Penta and Hepta Quark State in Confining Gauge Theories

    Full text link
    We study a new embedding solutions of D5 brane in an asymptotic AdS5Ă—S5{}_5\times S^5 space-time, which is dual to a confining SU(Nc)SU(N_c) gauge theory. The D5 brane is wrapped on S5S^5 as in the case of the vertex of holographic baryon. However, the solution given here is different from the usual baryon vertex in the point that it couples to kk-anti-quarks and Nc+kN_c+k quarks on the opposite two points of S5S^5, the north and south poles, respectively. The total quark number of this state is preserved as NcN_c when minus one is assigned to anti-quark, then it forms a color singlet like the baryon. However, this includes anti-quarks and quarks, whose number is larger than that of the baryon. When we set as Nc=3N_c=3, we find the so called penta and hepta-quark states. We study the dynamical properties of these states by solving the vertex and string configurations for such states. The mass spectra of these states and the tension of the stretched vertex are estimated, and they are compared with that of the baryon.Comment: 24 pages, 6 figure

    Pseudoscalar Glueball, eta'-meson and its Excitation in the Chiral Effective Lagrangian

    Full text link
    A generalization of the chiral effective lagrangian of order p2p^2 is proposed which involves the η′\eta'-meson, its excitation, and the pseudoscalar (PS) glueball. Model-independent constraints are found for the contributions to the lagrangian of the above singlet states. Those allow one to independently identify the nature of these singlet states in the framework of the approach. The mixing among the iso-singlet states (including η8\eta^8-state) is analysed, and the hierarchy of the mixing angles is described which is defined by the chiral and large-NcN_c expansions. The recent PCAC results are reproduced, which are related to the problem of the renormalization-group invariant description of the η′\eta' and the PS glueball, and a further analysis of this problem is performed.Comment: 19 pages LaTeX, no figures. Revised version accepted in Phis.Rev.

    M-Branes and Metastable States

    Full text link
    We study a supersymmetry breaking deformation of the M-theory background found in arXiv:hep-th/0012011. The supersymmetric solution is a warped product of R^{2,1} and the 8-dimensional Stenzel space, which is a higher dimensional generalization of the deformed conifold. At the bottom of the warped throat there is a 4-sphere threaded by \tilde{M} units of 4-form flux. The dual (2+1)-dimensional theory has a discrete spectrum of bound states. We add p anti-M2 branes at a point on the 4-sphere, and show that they blow up into an M5-brane wrapping a 3-sphere at a fixed azimuthal angle on the 4-sphere. This supersymmetry breaking state turns out to be metastable for p / \tilde{M} < 0.054. We find a smooth O(3)-symmetric Euclidean bounce solution in the M5-brane world volume theory that describes the decay of the false vacuum. Calculation of the Euclidean action shows that the metastable state is extremely long-lived. We also describe the corresponding metastable states and their decay in the type IIA background obtained by reduction along one of the spatial directions of R^{2,1}.Comment: 33 pages, 5 figures; v2 note adde

    Intersecting Noncommutative D-branes and Baryons in Magnetic Fields

    Get PDF
    We study supersymmetric intersecting configurations of D-branes with B-field backgrounds. Noncommutative D-brane or M-brane pairs can intersect supersymmetrically over (p-1)-brane, as well as over (p-2)-brane like ordinary branes. d=10 and d=11 supergravity solutions are obtained and the supersymmetry projection rule is examined. As an application we study a noncommutative D7-brane probe in noncommutative D3-brane background, intersecting at noncommutative plane, which describes BPS baryons of noncommutative gauge theory in the context of AdS/CFT correspondence.Comment: 15 pages;several important references are added and typos correcte

    Effective spatial dimension of extremal non-dilatonic black p-branes and the description of entropy on the world volume

    Full text link
    By investigating the critical behavior appearing at the extremal limit of the non-dilatonic, black p-branes in (d+p) dimensions, we find that some critical exponents related to the critical point obey the scaling laws. From the scaling laws we obtain that the effective spatial dimension of the non-dilatonic black holes and black strings is one, and is p for the non-dilatonic black p-branes. For the dilatonic black holes and black p-branes, the effective dimension will depend on the parameters in theories. Thus, we give an interpretation why the Bekenstein-Hawking entropy may be given a simple world volume interpretation only for the non-dilatonic black p-branes.Comment: 4 pages, RevTex, no figures, to appear in Phys. Rev. Let

    Quantum Cosmology of Kantowski-Sachs like Models

    Full text link
    The Wheeler-DeWitt equation for a class of Kantowski-Sachs like models is completely solved. The generalized models include the Kantowski-Sachs model with cosmological constant and pressureless dust. Likewise contained is a joined model which consists of a Kantowski-Sachs cylinder inserted between two FRW half--spheres. The (second order) WKB approximation is exact for the wave functions of the complete set and this facilitates the product structure of the wave function for the joined model. In spite of the product structure the wave function can not be interpreted as admitting no correlations between the different regions. This problem is due to the joining procedure and may therefore be present for all joined models. Finally, the {s}ymmetric {i}nitial {c}ondition (SIC) for the wave function is analyzed and compared with the ``no bouindary'' condition. The consequences of the different boundary conditions for the arrow of time are briefly mentioned.Comment: 21 pages, uses LaTeX2e, epsf.sty and float.sty, three figures (50 kb); changes: one figure added, new interpretation of quantizing procedure for the joined model and many minor change
    • …
    corecore