14 research outputs found

    Vacuum Polarization and Dynamical Chiral Symmetry Breaking: Phase Diagram of QED with Four-Fermion Contact Interaction

    Full text link
    We study chiral symmetry breaking for fundamental charged fermions coupled electromagnetically to photons with the inclusion of four-fermion contact self-interaction term. We employ multiplicatively renormalizable models for the photon dressing function and the electron-photon vertex which minimally ensures mass anomalous dimension = 1. Vacuum polarization screens the interaction strength. Consequently, the pattern of dynamical mass generation for fermions is characterized by a critical number of massless fermion flavors above which chiral symmetry is restored. This effect is in diametrical opposition to the existence of criticality for the minimum interaction strength necessary to break chiral symmetry dynamically. The presence of virtual fermions dictates the nature of phase transition. Miransky scaling laws for the electromagnetic interaction strength and the four-fermion coupling, observed for quenched QED, are replaced by a mean-field power law behavior corresponding to a second order phase transition. These results are derived analytically by employing the bifurcation analysis, and are later confirmed numerically by solving the original non-linearized gap equation. A three dimensional critical surface is drawn to clearly depict the interplay of the relative strengths of interactions and number of flavors to separate the two phases. We also compute the beta-function and observe that it has ultraviolet fixed point. The power law part of the momentum dependence, describing the mass function, reproduces the quenched limit trivially. We also comment on the continuum limit and the triviality of QED.Comment: 9 pages, 10 figure

    Mitochondrial Genetic Differentiation of Spirlin (Actinopterigii: Cyprinidae) in the South Caspian Sea basin of Iran

    Get PDF
    Background Knowledge about Alburnoides remains lacking relative to many other species, resulting in a lack of a systematic position and taxonomic diagnosis. Basic biological information for Alburnoides has been constructed, and it is necessary to understand further and obtain more information about this species. Its phylogenetic relationships are still debated and no molecular data have been used to study this taxon in Iran. A holistic approach for genetic methods was adopted to analyze possible spirlin population differences at selected centers in the south Caspian Sea basin of Iran. Methods The phylogenetic relationships were determined based on 774 base pairs of the mitochondrial cytochrome b gene of 32 specimens of spirlin from nine locations in the south Caspian Sea drainage basin of Iran. The nucleotide sequences were subjected to phylogenetic analysis using the neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian methods. Results The mitochondrial gene tree largely supports the existence of three major clades. The western populations (clade I) may be considered as Alburnoides eichwaldii , whereas the Talar river populations (clade II) are represented as Alburnoides sp. 1 and the eastern populations (clade III) may be distinct taxa of Alburnoides sp.2. Conclusion This molecular evidence supports the hypothesis that A. bipunctatus does not exist in the south Caspian Sea basin of Iran, and that the western and eastern populations are distinct taxa

    On Dark Matter Annihilation in the Local Group

    Full text link
    Under the hypothesis of a Dark Matter composed by supersymmetric particles like neutralinos, we investigate the possibility that their annihilation in the haloes of nearby galaxies could produce detectable fluxes of Îł\gamma-photons. Expected fluxes depend on several, poorly known quantities such as the density profiles of Dark Matter haloes, the existence and prominence of central density cusps and the presence of a population of sub-haloes. We find that, for all reasonable choices of Dark Matter halo models, the intensity of the Îł\gamma-ray flux from some of the nearest extragalactic objects, like M31, is comparable or higher than the diffuse Galactic foreground. We show that next generation ground-based experiments could have the sensitivity to reveal such fluxes which could help us unveiling the nature of Dark Matter particles.Comment: 11 pages, 10 figures. Accepted for publication in Phys. Rev. D.; added a new paragraph on the detectability of Galactic sub-halos in our Galaxy; added a discussion on their model dependence. The relation of our results with the "CDM crisis" issue has also been adde

    Two photon annihilation of Kaluza-Klein dark matter

    Full text link
    We investigate the fermionic one-loop cross section for the two photon annihilation of Kaluza-Klein (KK) dark matter particles in a model of universal extra dimensions (UED). This process gives a nearly mono-energetic gamma-ray line with energy equal to the KK dark matter particle mass. We find that the cross section is large enough that if a continuum signature is detected, the energy distribution of gamma-rays should end at the particle mass with a peak that is visible for an energy resolution of the detector at the percent level. This would give an unmistakable signature of a dark matter origin of the gamma-rays, and a unique determination of the dark matter particle mass, which in the case studied should be around 800 GeV. Unlike the situation for supersymmetric models where the two-gamma peak may or may not be visible depending on parameters, this feature seems to be quite robust in UED models, and should be similar in other models where annihilation into fermions is not helicity suppressed. The observability of the signal still depends on largely unknown astrophysical parameters related to the structure of the dark matter halo. If the dark matter near the galactic center is adiabatically contracted by the central star cluster, or if the dark matter halo has substructure surviving tidal effects, prospects for detection look promising.Comment: 17 pages, 3 figures; slightly revised versio

    A potential WIMP signature for the caustic ring halo model

    Get PDF
    Weakly Interacting Massive Particle (WIMP) direct detection event rate calculations usually rely on fairly simple, essentially static, analytic halo models. This is largely since the resolution of numerical simulations is not yet large enough to allow the full numerical calculation of the WIMP density and velocity distribution. In this paper we study the direct detection rate, in particular its energy dependence and annual modulation, for the caustic ring halo model. In this model, which uses simple assumptions to model the infall of dark matter onto the halo, the distribution of the cold dark matter particles at the Earth's location has a series of peaks in velocity space. We find that the sign of the annual modulation in the event rate changes as a function of recoil energy. These effects provide a potentially distinctive experimental signal.Comment: 6 pages, 3 figures. Version to appear in Phys. Rev. D. Comparsion with DAMA annual modulation data replaced with qualitative discussio

    Signatures of Hierarchical Clustering in Dark Matter Detection Experiments

    Get PDF
    In the cold dark matter model of structure formation, galaxies are assembled hierarchically from mergers and the accretion of subclumps. This process is expected to leave residual substructure in the Galactic dark halo, including partially disrupted clumps and their associated tidal debris. We develop a model for such halo substructure and study its implications for dark matter (WIMP and axion) detection experiments. We combine the Press-Schechter model for the distribution of halo subclump masses with N-body simulations of the evolution and disruption of individual clumps as they orbit through the evolving Galaxy to derive the probability that the Earth is passing through a subclump or stream of a given density. Our results suggest that it is likely that the local complement of dark matter particles includes a 1-5% contribution from a single clump. The implications for dark matter detection experiments are significant, since the disrupted clump is composed of a `cold' flow of high-velocity particles. We describe the distinctive features due to halo clumps that would be seen in the energy and angular spectra of detection experiments. The annual modulation of these features would have a different signature and phase from that for a smooth halo and, in principle, would allow one to discern the direction of motion of the clump relative to the Galactic center.Comment: 26 pages, 18 figure
    corecore