813 research outputs found
Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries
Inspiral signals from binary compact objects (black holes and neutron stars)
are primary targets of the ongoing searches by ground-based gravitational-wave
interferometers (LIGO, Virgo, GEO-600 and TAMA-300). We present
parameter-estimation simulations for inspirals of black-hole--neutron-star
binaries using Markov-chain Monte-Carlo methods. For the first time, we have
both estimated the parameters of a binary inspiral source with a spinning
component and determined the accuracy of the parameter estimation, for
simulated observations with ground-based gravitational-wave detectors. We
demonstrate that we can obtain the distance, sky position, and binary
orientation at a higher accuracy than previously suggested in the literature.
For an observation of an inspiral with sufficient spin and two or three
detectors we find an accuracy in the determination of the sky position of
typically a few tens of square degrees.Comment: v2: major conceptual changes, 4 pages, 1 figure, 1 table, submitted
to ApJ
The effects of LIGO detector noise on a 15-dimensional Markov-chain Monte-Carlo analysis of gravitational-wave signals
Gravitational-wave signals from inspirals of binary compact objects (black
holes and neutron stars) are primary targets of the ongoing searches by
ground-based gravitational-wave (GW) interferometers (LIGO, Virgo, and
GEO-600). We present parameter-estimation results from our Markov-chain
Monte-Carlo code SPINspiral on signals from binaries with precessing spins. Two
data sets are created by injecting simulated GW signals into either synthetic
Gaussian noise or into LIGO detector data. We compute the 15-dimensional
probability-density functions (PDFs) for both data sets, as well as for a data
set containing LIGO data with a known, loud artefact ("glitch"). We show that
the analysis of the signal in detector noise yields accuracies similar to those
obtained using simulated Gaussian noise. We also find that while the Markov
chains from the glitch do not converge, the PDFs would look consistent with a
GW signal present in the data. While our parameter-estimation results are
encouraging, further investigations into how to differentiate an actual GW
signal from noise are necessary.Comment: 11 pages, 2 figures, NRDA09 proceeding
Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines
<p>Abstract</p> <p>Background</p> <p>Gluten proteins can induce celiac disease (CD) in genetically susceptible individuals. In CD patients gluten-derived peptides are presented to the immune system, which leads to a CD4<sup>+ </sup>T-cell mediated immune response and inflammation of the small intestine. However, not all gluten proteins contain T-cell stimulatory epitopes. Gluten proteins are encoded by multigene loci present on chromosomes 1 and 6 of the three different genomes of hexaploid bread wheat (<it>Triticum aestivum</it>) (AABBDD).</p> <p>Results</p> <p>The effects of deleting individual gluten loci on both the level of T-cell stimulatory epitopes in the gluten proteome and the technological properties of the flour were analyzed using a set of deletion lines of <it>Triticum aestivum </it>cv. Chinese Spring. The reduction of T-cell stimulatory epitopes was analyzed using monoclonal antibodies that recognize T-cell epitopes present in gluten proteins. The deletion lines were technologically tested with respect to dough mixing properties and dough rheology. The results show that removing the α-gliadin locus from the short arm of chromosome 6 of the D-genome (6DS) resulted in a significant decrease in the presence of T-cell stimulatory epitopes but also in a significant loss of technological properties. However, removing the ω-gliadin, γ-gliadin, and LMW-GS loci from the short arm of chromosome 1 of the D-genome (1DS) removed T-cell stimulatory epitopes from the proteome while maintaining technological properties.</p> <p>Conclusion</p> <p>The consequences of these data are discussed with regard to reducing the load of T-cell stimulatory epitopes in wheat, and to contributing to the design of CD-safe wheat varieties.</p
Phase-Induced (In)-Stability in Coupled Parametric Oscillators
We report results on a model of two coupled oscillators that undergo periodic
parametric modulations with a phase difference . Being to a large
extent analytically solvable, the model reveals a rich dependence of
the regions of parametric resonance. In particular, the intuitive notion that
anti-phase modulations are less prone to parametric resonance is confirmed for
sufficiently large coupling and damping. We also compare our results to a
recently reported mean field model of collective parametric instability,
showing that the two-oscillator model can capture much of the qualitative
behavior of the infinite system.Comment: 19 pages, 8 figures; a version with better quality figures can be
found in http://hypatia.ucsd.edu/~mauro/English/publications.htm
A New Finite-lattice study of the Massive Schwinger Model
A new finite lattice calculation of the low lying bound state energies in the
massive Schwinger model is presented, using a Hamiltonian lattice formulation.
The results are compared with recent analytic series calculations in the low
mass limit, and with a new higher order non-relativistic series which we
calculate for the high mass limit. The results are generally in good agreement
with these series predictions, and also with recent calculations by light cone
and related techniques
Nonequilibrium wetting transitions with short range forces
We analyze within mean-field theory as well as numerically a KPZ equation
that describes nonequilibrium wetting. Both complete and critical wettitng
transitions were found and characterized in detail. For one-dimensional
substrates the critical wetting temperature is depressed by fluctuations. In
addition, we have investigated a region in the space of parameters (temperature
and chemical potential) where the wet and nonwet phases coexist. Finite-size
scaling analysis of the interfacial detaching times indicates that the finite
coexistence region survives in the thermodynamic limit. Within this region we
have observed (stable or very long-lived) structures related to spatio-temporal
intermittency in other systems. In the interfacial representation these
structures exhibit perfect triangular (pyramidal) patterns in one (two
dimensions), that are characterized by their slope and size distribution.Comment: 11 pages, 5 figures. To appear in Physical Review
Finite time and asymptotic behaviour of the maximal excursion of a random walk
We evaluate the limit distribution of the maximal excursion of a random walk
in any dimension for homogeneous environments and for self-similar supports
under the assumption of spherical symmetry. This distribution is obtained in
closed form and is an approximation of the exact distribution comparable to
that obtained by real space renormalization methods. Then we focus on the early
time behaviour of this quantity. The instantaneous diffusion exponent
exhibits a systematic overshooting of the long time exponent. Exact results are
obtained in one dimension up to third order in . In two dimensions,
on a regular lattice and on the Sierpi\'nski gasket we find numerically that
the analytic scaling holds.Comment: 9 pages, 4 figures, accepted J. Phys.
A Universal Approach to Eliminate Antigenic Properties of Alpha-Gliadin Peptides in Celiac Disease
Celiac disease is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins, including the α-gliadins. It has been shown that α-gliadins harbor several major epitopes involved in the disease pathogenesis. A major step towards elimination of gluten toxicity for celiac disease patients would thus be the elimination of such epitopes from α-gliadins. We have analyzed over 3,000 expressed α-gliadin sequences from 11 bread wheat cultivars to determine whether they encode for peptides potentially involved in celiac disease. All identified epitope variants were synthesized as peptides and tested for binding to the disease-associated HLA-DQ2 and HLA-DQ8 molecules and for recognition by patient-derived α-gliadin specific T cell clones. Several specific naturally occurring amino acid substitutions were identified for each of the α-gliadin derived peptides involved in celiac disease that eliminate the antigenic properties of the epitope variants. Finally, we provide proof of principle at the peptide level that through the systematic introduction of such naturally occurring variations α-gliadins genes can be generated that no longer encode antigenic peptides. This forms a crucial step in the development of strategies to modify gluten genes in wheat so that it becomes safe for celiac disease patients. It also provides the information to design and introduce safe gluten genes in other cereals, which would exhibit improved quality while remaining safe for consumption by celiac disease patients
Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease
Gluten proteins from wheat can induce celiac disease (CD) in genetically susceptible individuals. Specific gluten peptides can be presented by antigen presenting cells to gluten-sensitive T-cell lymphocytes leading to CD. During the last decades, a significant increase has been observed in the prevalence of CD. This may partly be attributed to an increase in awareness and to improved diagnostic techniques, but increased wheat and gluten consumption is also considered a major cause. To analyze whether wheat breeding contributed to the increase of the prevalence of CD, we have compared the genetic diversity of gluten proteins for the presence of two CD epitopes (Glia-α9 and Glia-α20) in 36 modern European wheat varieties and in 50 landraces representing the wheat varieties grown up to around a century ago. Glia-α9 is a major (immunodominant) epitope that is recognized by the majority of CD patients. The minor Glia-α20 was included as a technical reference. Overall, the presence of the Glia-α9 epitope was higher in the modern varieties, whereas the presence of the Glia-α20 epitope was lower, as compared to the landraces. This suggests that modern wheat breeding practices may have led to an increased exposure to CD epitopes. On the other hand, some modern varieties and landraces have been identified that have relatively low contents of both epitopes. Such selected lines may serve as a start to breed wheat for the introduction of ‘low CD toxic’ as a new breeding trait. Large-scale culture and consumption of such varieties would considerably aid in decreasing the prevalence of CD
Multidisciplinary investigation links backward-speech trait and working memory through genetic mutation
Case studies of unusual traits can provide unique snapshots of the effects of modified systems. In this study, we report on an individual from a Serbian family with the ability to rapidly, accurately and voluntarily speak backwards. We consider psychological, neural and genetic correlates of this trait to identify specific relevant neural mechanisms and new molecular pathways for working memory and speech-related tasks. EEG data suggest that the effect of word reversal precedes semantic integration of visually presented backward-words, and that event-related potentials above the frontal lobe are affected by both word reversal and the maintenance of backward-words in working memory. fMRI revealed that the left fusiform gyrus may facilitate the production of backward-speech. Exome sequencing identified three novel coding variants of potential significance in the RIC3, RIPK1 and ZBED5 genes. Taken together, our data suggest that, in this individual, the ability to speak backwards is afforded by an extraordinary working memory capacity. We hypothesise that this is served by cholinergic projections from the basal forebrain to the frontal cortex and supported by visual semantic loops within the left fusiform gyrus and that these neural processes may be mediated by a genetic mutation in RIC3; a chaperone for nicotinic acetylcholine receptors
- …