440 research outputs found
Effect of different feeding regimes on reproduction and survival of ablated Penaeus monodon Fabricius
Results of experiments conducted on ablated Penaeus monodon, fed with 4 different feeds (pellet-pellet, mussel-mussel, mussel-pellet and squid-pellet), on survival, spawning, fecundity and hatching rate are given and discussed
Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke
BACKGROUND: Matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) are increased in the brain after experimental ischemic stroke in rats. These two proteases are involved with the degradation of the basal lamina and loss of stability of the blood brain barrier that occurs after ischemia and that is associated with thrombolytic therapy in ischemic stroke. Minocycline is a lipophilic tetracycline and is neuroprotective in several models of brain injury. Minocycline inhibits inflammation, apoptosis and extracellular matrix degradation. In this study we investigated whether delayed minocycline inhibits brain MMPs activated by ischemia in a model of temporary occlusion in Wistar rats. RESULTS: Both MMP-2 and MMP-9 were elevated in the ischemic tissue as compared to the contra-lateral hemisphere after 3 hours occlusion and 21 hours survival (p < 0.0001 for MMP-9). Intraperitoneal minocycline at 45 mg/kg concentration twice a day (first dose immediately after the onset of reperfusion) significantly reduced gelatinolytic activity of ischemia-elevated MMP-2 and MMP-9 (p < 0.0003). Treatment also reduced protein concentration of both enzymes (p < 0.038 for MMP-9 and p < 0.018 for MMP-2). In vitro incubation of minocycline in concentrations as low as 0.1 μg/ml with recombinant MMP-2 and MMP-9 impaired enzymatic activity and MMP-9 was more sensitive at lower minocycline concentrations (p < 0.05). CONCLUSION: Minocycline inhibits enzymatic activity of gelatin proteases activated by ischemia after experimental stroke and is likely to be selective for MMP-9 at low doses. Minocycline is a potential new therapeutic agent to acute treatment of ischemic stroke
Differential Regional and Subtype-Specific Vulnerability of Enteric Neurons to Mitochondrial Dysfunction
Mitochondrial dysfunction is a central mediator of disease progression in diverse neurodegenerative diseases that often present with prominent gastrointestinal abnormalities. Gastrointestinal dysfunction in these disorders is related, at least in part, to defects in the enteric nervous system (ENS). The role of mitochondrial deficits in ENS neurodegeneration and their relative contribution to gastrointestinal dysfunction, however, are unclear. To better understand how mitochondrial abnormalities in the ENS influence enteric neurodegeneration and affect intestinal function, we generated mice (Tfam-ENSKOs) with impaired mitochondrial metabolism in enteric neurons and glia through the targeted deletion of the mitochondrial transcription factor A gene (Tfam). Tfam-ENSKO mice were initially viable but, at an early age, they developed severe gastrointestinal motility problems characterized by intestinal pseudo-obstruction resulting in premature death. This gastrointestinal dysfunction was caused by extensive, progressive neurodegeneration of the ENS involving both neurons and glia. Interestingly, mitochondrial defects differentially affected specific subpopulations of enteric neurons and regions of the gastrointestinal tract. Mitochondrial deficiency-related neuronal and glial loss was most prominent in the proximal small intestine, but the first affected neurons, nitrergic inhibitory neurons, had the greatest losses in the distal small intestine. This regional and subtype-specific variability in susceptibility to mitochondrial defects resulted in an imbalance of inhibitory and excitatory neurons that likely accounts for the observed phenotype in Tfam-ENSKO mice. Mitochondrial dysfunction, therefore, is likely to be an important driving force of neurodegeneration in the ENS and contribute to gastrointestinal symptoms in people with neurodegenerative disorders
Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusion model
Stem cells offer the basis for the promotion of robust new therapeutic approaches for a variety of human disorders. There are still many limitations to be overcome before clinical therapeutic application, including a better understanding of the mechanism by which stem cell therapies may lead to enhanced recovery. In vitro investigations are necessary to dissect the mechanisms involved and to support the potential development in stem cell-based therapies. In spite of growing interest in human amniotic fluid stem cells, not much is known about the characteristics of their secretome and regarding the potential neuroprotective mechanism in different pathologies, including stroke. To get more insight on amniotic fluid cells therapeutic potential, signal transduction pathways activated by human amniotic fluid stem cells (hAFSCs)-derived secretome in a stroke in vitro model (ischemia/reperfusion [I/R] model) were investigated by Western blot. Moreover, miRNA expression in the exosomal fraction of the conditioned medium was analyzed. hAFSCs-derived secretome was able to activate pro-survival and anti-apoptotic pathways. MicroRNA analysis in the exosomal component revealed a panel of 16 overexpressed miRNAs involved in the regulation of coherent signaling pathways. In particular, the pathways of relevance in ischemia/reperfusion, such as neurotrophin signaling, and those related to neuroprotection and neuronal cell death, were analyzed. The results obtained strongly point toward the neuroprotective effects of the hAFSCs-conditioned medium in the in vitro stroke model here analyzed. This can be achieved by the modulation and activation of pro-survival processes, at least in part, due to the activity of secreted miRNAs
Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats
BACKGROUND: Minocycline, a semi-synthetic tetracycline antibiotic, is an effective neuroprotective agent in animal models of cerebral ischemia when given in high doses intraperitoneally. The aim of this study was to determine if minocycline was effective at reducing infarct size in a Temporary Middle Cerebral Artery Occlusion model (TMCAO) when given at lower intravenous (IV) doses that correspond to human clinical exposure regimens. METHODS: Rats underwent 90 minutes of TMCAO. Minocycline or saline placebo was administered IV starting at 4, 5, or 6 hours post TMCAO. Infarct volume and neurofunctional tests were carried out at 24 hr after TMCAO using 2,3,5-triphenyltetrazolium chloride (TTC) brain staining and Neurological Score evaluation. Pharmacokinetic studies and hemodynamic monitoring were performed on minocycline-treated rats. RESULTS: Minocycline at doses of 3 mg/kg and 10 mg/kg IV was effective at reducing infarct size when administered at 4 hours post TMCAO. At doses of 3 mg/kg, minocycline reduced infarct size by 42% while 10 mg/kg reduced infarct size by 56%. Minocycline at a dose of 10 mg/kg significantly reduced infarct size at 5 hours by 40% and the 3 mg/kg dose significantly reduced infarct size by 34%. With a 6 hour time window there was a non-significant trend in infarct reduction. There was a significant difference in neurological scores favoring minocycline in both the 3 mg/kg and 10 mg/kg doses at 4 hours and at the 10 mg/kg dose at 5 hours. Minocycline did not significantly affect hemodynamic and physiological variables. A 3 mg/kg IV dose of minocycline resulted in serum levels similar to that achieved in humans after a standard 200 mg dose. CONCLUSIONS: The neuroprotective action of minocycline at clinically suitable dosing regimens and at a therapeutic time window of at least 4–5 hours merits consideration of phase I trials in humans in view of developing this drug for treatment of stroke
Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke
<p>Abstract</p> <p>Background</p> <p>Minocycline, a second-generation tetracycline with anti-inflammatory and anti-apoptotic properties, has been shown to promote therapeutic benefits in experimental stroke. However, equally compelling evidence demonstrates that the drug exerts variable and even detrimental effects in many neurological disease models. Assessment of the mechanism underlying minocycline neuroprotection should clarify the drug's clinical value in acute stroke setting.</p> <p>Results</p> <p>Here, we demonstrate that minocycline attenuates both <it>in vitro </it>(oxygen glucose deprivation) and <it>in vivo </it>(middle cerebral artery occlusion) experimentally induced ischemic deficits by direct inhibition of apoptotic-like neuronal cell death involving the anti-apoptotic Bcl-2/cytochrome c pathway. Such anti-apoptotic effect of minocycline is seen in neurons, but not apparent in astrocytes. Our data further indicate that the neuroprotection is dose-dependent, in that only low dose minocycline inhibits neuronal cell death cascades at the acute stroke phase, whereas the high dose exacerbates the ischemic injury.</p> <p>Conclusion</p> <p>The present study advises our community to proceed with caution to use the minimally invasive intravenous delivery of low dose minocycline in order to afford neuroprotection that is safe for stroke.</p
MULTISOURCE AND MULTITEMPORAL LAND COVER MAPPING OF GREATER LUZON ISLAND USING GOOGLE EARTH ENGINE
A variety of research endeavors and practical applications necessitate the use of land cover maps. These maps are valuable for tasks such as change detection, forest monitoring, urban expansion monitoring, natural resource mapping, catering to diverse user requirements. While satellite sensors offer essential data for comprehending spatial and temporal variations in land cover, relying on a single satellite system can be limiting, especially considering the potential hindrance of cloud cover in the case of optical sensors. To enhance temporal frequency, it becomes essential to utilize multiple satellite systems, albeit requiring harmonization to ensure consistent outcomes. This study presents a large-scale annual land cover mapping which utilizes harmonized Landsat-8 and Sentinel-2 satellite imagery, in conjunction with supplementary data, and a machine learning algorithm. In addition, the use of powerful computational processing platforms such as Google Earth Engine and Google Colaboratory is now a requirement to manage big geospatial data as well as to run different algorithms for processing and analysis
- …