45 research outputs found
Quark-Exchange Mechanism of Reaction At 2-6 GeV
Within the constituent quark model, we examine the extent to which the
deuteron photo-disintegration at 2-6 GeV can be described by the quark-exchange
mechanism. With the parameters constrained by the scattering, the
calculated differential cross sections disagree with the data in both magnitude
and energy-dependence. The results can be improved if we use a smaller size
parameter for quark wavefunctions. We also find that the on-shell approximation
used in a previous investigation is not accurateComment: To be published in the Proceeeding of Second Asia Pacific Conference
on Few-Body Problems in Physics, Shanghai, China, August 27-30, 200
Elastic Form Factors of He up to Large
Elastic electron scattering off He and He has recently been studied
at forward and backward scattering angles in Hall A at JLab. The results will
provide accurate data on the elastic form factors, charge and magnetic for
He and charge only for He, up to squared momentum transfer -values
of 3.2 GeV.Comment: 3 pages, Proceedings of EFB2
Indication of asymptotic scaling in the reactions H, He and
It is shown that the differential cross sections of the reactions and measured at c.m.s.scattering angle
in the interval of the deuteron beam energy 0.5 - 1.2 GeV demonstrate the
scaling behaviour,, which follows from constituent
quark counting rules. It is found also that the differential cross section of
the elastic scattering at follows
the scaling regime at beam energies 0.5 - 5 GeV. These data are
parameterized here using the Reggeon exchange.Comment: 6 pages, Latex, 2 eps figures; final version accepted by Pis'ma v
ZHETF, corrected and completed reference
QCD Rescattering and High Energy Two-Body Photodisintegration of the Deuteron
Photon absorption by a quark in one nucleon followed by its high momentum
transfer interaction with a quark in the other may produce two final-state
nucleons with high relative momentum. We sum the relevant quark rescattering
diagrams, to show that the scattering amplitude depends on a convolution
between the large angle scattering amplitude, the hard photon-quark
interaction vertex and the low-momentum deuteron wave function. The computed
absolute values of the cross section are in reasonable agreement with the data.Comment: 4 pages, revised version to be published in Phys. Rev. Let
Perturbative QCD and factorization of coherent pion photoproduction on the deuteron
We analyze the predictions of perturbative QCD for pion photoproduction on
the deuteron, gamma D -> pi^0 D, at large momentum transfer using the reduced
amplitude formalism. The cluster decomposition of the deuteron wave function at
small binding only allows the nuclear coherent process to proceed if each
nucleon absorbs an equal fraction of the overall momentum transfer.
Furthermore, each nucleon must scatter while remaining close to its mass shell.
Thus the nuclear photoproduction amplitude, M_{gamma D -> pi^0 D}(u,t),
factorizes as a product of three factors: (1) the nucleon photoproduction
amplitude, M_{gamma N_1 -> pi^0 N_1}(u/4,t/4), at half of the overall momentum
transfer, (2) a nucleon form factor, F_{N_2}(t/4), at half the overall momentum
transfer, and (3) the reduced deuteron form factor, f_d(t), which according to
perturbative QCD, has the same monopole falloff as a meson form factor. A
comparison with the recent JLAB data for gamma D -> pi^0 D of Meekins et al.
[Phys. Rev. C 60, 052201 (1999)] and the available gamma p -> pi^0 p data shows
good agreement between the perturbative QCD prediction and experiment over a
large range of momentum transfers and center of mass angles. The reduced
amplitude prediction is consistent with the constituent counting rule, p^11_T
M_{gamma D -> pi^0 D} -> F(theta_cm), at large momentum transfer. This is found
to be consistent with measurements for photon lab energies E_gamma > 3 GeV at
theta_cm=90 degrees and \elab > 10 GeV at 136 degrees.Comment: RevTeX 3.1, 17 pages, 6 figures; v2: incorporates minor changes as
version accepted by Phys Rev
Relativistic Contributions to Deuteron Photodisintegration in the Bethe-Salpeter Formalism
In plane wave one-body approximation the reaction of deuteron
photodisintegration is considered in the framework of the Bethe-Salpeter
formalism for two-nucleon system. Results are obtained for deuteron vertex
function, which is the solution of the homogeneous Bethe-Salpeter equation with
a multi-rank separable interaction kernel, with a given analytical form. A
comparison is presented with predictions of non-relativistic, quasipotential
approaches and the equal time approximation. It is shown that important
contributions come from the boost in the arguments of the initial state vertex
function and the boost on the relative energy in the one-particle propagator
due to recoil.Comment: 29 pages, 6 figure
Inclusive Electron-Nucleus Scattering at Large Momentum Transfer
Inclusive electron scattering is measured with 4.045 GeV incident beam energy
from C, Fe and Au targets. The measured energy transfers and angles correspond
to a kinematic range for Bjorken and momentum transfers from . When analyzed in terms of the y-scaling function the data show
for the first time an approach to scaling for values of the initial nucleon
momenta significantly greater than the nuclear matter Fermi-momentum (i.e. GeV/c).Comment: 5 pages TEX, 5 Postscript figures also available at
http://www.krl.caltech.edu/preprints/OAP.htm
Determination of the pion charge form factor for Q^2=0.60-1.60 GeV^2
The data analysis for the reaction H(e,e' pi^+)n, which was used to determine
values for the charged pion form factor Fpi for values of Q^2=0.6-1.6 GeV^2,
has been repeated with careful inspection of all steps and special attention to
systematic uncertainties. Also the method used to extract Fpi from the measured
longitudinal cross section was critically reconsidered. Final values for the
separated longitudinal and transverse cross sections and the extracted values
of Fpi are presented.Comment: 11 pages, 6 figure