25 research outputs found

    Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without Additional Developmental Anomalies

    Get PDF
    Pre-mRNA splicing factors play a fundamental role in regulating transcript diversity both temporally and spatially. Genetic defects in several spliceosome components have been linked to a set of non-overlapping spliceosomopathy phenotypes in humans, among which skeletal developmental defects and non-syndromic retinitis pigmentosa (RP) are frequent findings. Here we report that defects in spliceosome-associated protein CWC27 are associated with a spectrum of disease phenotypes ranging from isolated RP to severe syndromic forms. By whole-exome sequencing, recessive protein-truncating mutations in CWC27 were found in seven unrelated families that show a range of clinical phenotypes, including retinal degeneration, brachydactyly, craniofacial abnormalities, short stature, and neurological defects. Remarkably, variable expressivity of the human phenotype can be recapitulated in Cwc27 mutant mouse models, with significant embryonic lethality and severe phenotypes in the complete knockout mice while mice with a partial loss-of-function allele mimic the isolated retinal degeneration phenotype. Our study describes a retinal dystrophy-related phenotype spectrum as well as its genetic etiology and highlights the complexity of the spliceosomal gene network

    The mannose binding lectin gene influences the severity of chronic liver disease in cystic fibrosis

    No full text
    Chronic liver disease is a major complication of cystic fibrosis. Its incidence and severity show marked heterogeneity, even among the homogeneous group of homozygous ΔF508 patients, suggesting that environmental or genetic factors other than the deletion ΔF508 may influence the development of cystic fibrosis related liver disease. We investigated whether the allelic variants of mannose binding lectin, an important protein of the immune system, could be associated with the presence of cirrhosis in a population of 216 homogeneous homozygous ΔF508 patients. Analysis of the data shows that the presence of cirrhosis in cystic fibrosis patients is significantly associated with a mutated mannose binding lectin genotype (homozygous or compound heterozygous for mannose binding lectin variants). The modulating role of mannose binding lectin in the occurrence of cirrhosis in cystic fibrosis could be explained by the fact that hepatotoxic damage from viruses or bacteria might be increased by the immunodeficiency associated with mannose binding lectin variants and might facilitate the degradation of liver status. These data highlight the crucial role of mannose binding lectin in the clinical outcome of cystic fibrosis, as it has recently been shown that the mannose binding lectin gene is a modulating gene of the respiratory involvement in cystic fibrosis patients.


Keywords: cystic fibrosis; cirrhosis; mannose binding lectin; modulating gen

    Evaluation of parental mitochondrial inheritance in neonates born after intracytoplasmic sperm injection.

    Get PDF
    Intracytoplasmic sperm injection (ICSI) is now used when severe male-factor infertility has been documented. Since defective mitochondrial functions may result in male hypofertility, it is of prime importance to evaluate the risk of paternal transmission of an mtDNA defect to neonates. DNA samples from the blood of 21 infertile couples and their 27 neonates born after ICSI were studied. The highly polymorphic mtDNA D-loop region was analyzed by four PCR-based approaches. With denaturing gradient gel electrophoresis (DGGE), which allows 2% of a minor mtDNA species to be detected, the 27 newborns had a DGGE pattern identical to that of their mother but different from that of their father. Heteroplasmy documented in several parents and children supported an exclusive maternal inheritance of mtDNA. The parental origin of the children's mtDNA molecules also was studied by more-sensitive assays: restriction-endonuclease analysis (REA) of alpha[32P]-radiolabeled PCR products; paternal-specific PCR assay; and depletion of maternal mtDNA, followed by REA. We did not detect paternal mtDNA in nine neonates, with a sensitivity level of 0.01% in five children, 0.1% in two children, and 1% in two children. The estimated ratio of sperm-to-oocyte mtDNA molecules in humans is 0.1%-1.5%. Thus, we conclude that, in these families, the ICSI procedure performed with mature spermatozoa did not alter the uniparental pattern of inheritance of mtDNA

    Decreased expression of Intestinal I- and L-FABP levels in rare human genetic lipid malabsorption syndromes.

    No full text
    We investigated, for the first time, the expression of I- and L-FABP in two very rare hereditary lipid malabsorption syndromes as compared with normal subjects. Abetalipoproteinemia (ABL) and Anderson's disease (AD) are characterized by an inability to export alimentary lipids as chylomicrons that result in fat loading of enterocytes. Duodeno-jejunal biopsies were obtained from 14 fasted normal subjects, and from four patients with ABL and from six with AD. Intestinal FABP expression was investigated by immuno-histochemistry, western blot, ELISA and Northern blot analysis. In contrast to normal subjects, the cellular immunostaining for both FABPs was clearly decreased in patients, as the enterocytes became fat-laden. In patients with ABL, the intestinal contents of I- (60.7 +/- 13.38 ng/mg protein) and L-FABP (750.3 +/- 121.3 ng/mg protein) are significantly reduced (50 and 35%, P < 0.05, respectively) as compared to normal subjects (I-135.3 +/- 11.1 ng, L-1211 +/- 110 ng/mg protein). In AD, the patients also exhibited decreased expression (50%, P < 0.05; I-59 +/- 11.88 ng, L-618.2 +/- 104.6 ng/mg protein). Decreased FABP expression was not associated with decreased mRNA levels. The results suggest that enterocytes might regulate intracellular FABP content in response to intracellular fatty acids, which we speculate may act as lipid sensors to prevent their intracellular transport

    Pathways systematically associated to Hirschsprung's disease.

    No full text
    Despite it has been reported that several loci are involved in Hirschsprung's disease, the molecular basis of the disease remains yet essentially unknown. The study of collective properties of modules of functionally-related genes provides an efficient and sensitive statistical framework that can overcome sample size limitations in the study of rare diseases. Here, we present the extension of a previous study of a Spanish series of HSCR trios to an international cohort of 162 HSCR trios to validate the generality of the underlying functional basis of the Hirschsprung's disease mechanisms previously found. The Pathway-Based Analysis (PBA) confirms a strong association of gene ontology (GO) modules related to signal transduction and its regulation, enteric nervous system (ENS) formation and other processes related to the disease. In addition, network analysis recovers sub-networks significantly associated to the disease, which contain genes related to the same functionalities, thus providing an independent validation of these findings. The functional profiles of association obtained for patients populations from different countries were compared to each other. While gene associations were different at each series, the main functional associations were identical in all the five populations. These observations would also explain the reported low reproducibility of associations of individual disease genes across populations
    corecore