128 research outputs found

    Pulmonary embolism in patients with COVID-19: Time to change the paradigm of computed tomography.

    Get PDF
    To raise awareness for possible benefits of examining known COVID-19 patients presenting sudden clinical worsening with CT pulmonary angiography instead of standard non-contrast chest CT

    Influence of model based iterative reconstruction algorithm on image quality of multiplanar reformations in reduced dose chest CT.

    Get PDF
    Model-based iterative reconstruction (MBIR) reduces image noise and improves image quality (IQ) but its influence on post-processing tools including maximal intensity projection (MIP) and minimal intensity projection (mIP) remains unknown. To evaluate the influence on IQ of MBIR on native, mIP, MIP axial and coronal reformats of reduced dose computed tomography (RD-CT) chest acquisition. Raw data of 50 patients, who underwent a standard dose CT (SD-CT) and a follow-up RD-CT with a CT dose index (CTDI) of 2-3 mGy, were reconstructed by MBIR and FBP. Native slices, 4-mm-thick MIP, and 3-mm-thick mIP axial and coronal reformats were generated. The relative IQ, subjective IQ, image noise, and number of artifacts were determined in order to compare different reconstructions of RD-CT with reference SD-CT. The lowest noise was observed with MBIR. RD-CT reconstructed by MBIR exhibited the best relative and subjective IQ on coronal view regardless of the post-processing tool. MBIR generated the lowest rate of artefacts on coronal mIP/MIP reformats and the highest one on axial reformats, mainly represented by distortions and stairsteps artifacts. The MBIR algorithm reduces image noise but generates more artifacts than FBP on axial mIP and MIP reformats of RD-CT. Conversely, it significantly improves IQ on coronal views, without increasing artifacts, regardless of the post-processing technique

    Relationship between pneumonitis induced by immune checkpoint inhibitors and the underlying parenchymal status: a retrospective study.

    Get PDF
    In patients with primary or secondary lung tumour treated with immune checkpoint inhibitors, immune-related pneumonitis is a rare adverse event but may evolve to respiratory failure. Prompt management is required and usually consists of treatment interruption and immunosuppressive drug administration. The aim of this study was to evaluate relationships between immune-related pneumonitis and pre-existing parenchymal status, especially tumour location and history of chest radiotherapy. Computed tomography (CT) scans of patients with immune-related pneumonitis were retrospectively reviewed. Pattern, distribution and extent of pneumonitis were assessed in six lung regions. In patients who received radiotherapy, the extent of pneumonitis was evaluated according to the radiation field. Among 253 patients treated with immunotherapy, 15 cases of immune-related pneumonitis were identified. 10 had previous or concomitant chest radiotherapy in addition to immunotherapy. At CT scan, 29 (33%) out of 88 regions encompassed the primary tumour (n=4), a lung metastasis (n=4) and/or radiation fields (n=21). A significantly higher prevalence of parenchymal involvement by immune-related pneumonitis occurred within areas of primary or metastatic malignancy and/or radiation field (97%) as compared to other areas (3%, p=0.009). Lung regions affected by the primary tumour, metastasis or radiotherapy had a higher probability of immune-related pneumonitis than others (OR 10.8, p=0.024). An organising pneumonia (OP) pattern was more frequent after radiotherapy (70% versus 0%, p=0.024), whereas nonspecific interstitial pneumonia features were more commonly seen in radiotherapy-naive patients (100% versus 10%, p=0.002). In patients with primary or secondary lung tumour treated with immune checkpoint inhibitors, immune-related pneumonitis is preferentially located within lung areas involved by tumour and/or radiation fields

    Imaging features and differential diagnoses of non-neoplastic diffuse mediastinal diseases.

    Get PDF
    Acute or chronic non-neoplastic diffuse mediastinal diseases have multiple causes, degrees of severity, and a wide range of management. Some situations require emergency care while others do not need specific treatment. Although the diagnosis may be suspected on chest X-ray, it is mainly based on CT. A delayed recognition is not uncommonly observed. Some findings may prompt the radiologist to look for specific associated injuries or lesions.This pictorial review will successively describe the various non-neoplastic causes of diffuse mediastinal diseases with their typical findings and major differentials.First, pneumomediastinum that can be provoked by extra- or intra-thoracic triggers requires the knowledge of patient's history or recent occurrences. Absence of any usual etiological factor should raise suspicion of cocaine inhalation in young individuals.Next, acute mediastinitis may be related to post-operative complications, esophageal perforation, or contiguous spread of odontogenic or retropharyngeal infections. The former diagnosis is not an easy task in the early stage, owing to the similarities of imaging findings with those of normal post-operative appearance during the first 2-3 weeks.Finally, fibrosing mediastinitis that is linked to an excessive fibrotic reaction in the mediastinum with variable compromise of mediastinal structures, in particular vascular and airway ones. Differential diagnosis includes tumoral and inflammatory infiltrations of the mediastinum

    Conidiobolus pachyzygosporus invasive pulmonary infection in a patient with acute myeloid leukemia: case report and review of the literature.

    Get PDF
    Conidiobolus spp. (mainly C. coronatus) are the causal agents of rhino-facial conidiobolomycosis, a limited soft tissue infection, which is essentially observed in immunocompetent individuals from tropical areas. Rare cases of invasive conidiobolomycosis due to C. coronatus or other species (C.incongruus, C.lamprauges) have been reported in immunocompromised patients. We report here the first case of invasive pulmonary fungal infection due to Conidiobolus pachyzygosporus in a Swiss patient with onco-haematologic malignancy. A 71 year-old female was admitted in a Swiss hospital for induction chemotherapy of acute myeloid leukemia. A chest CT performed during the neutropenic phase identified three well-circumscribed lung lesions consistent with invasive fungal infection, along with a positive 1,3-beta-d-glucan assay in serum. A transbronchial biopsy of the lung lesions revealed large occasionally septate hyphae. A Conidiobolus spp. was detected by direct 18S rDNA in the tissue biopsy and subsequently identified at species level as C. pachyzygosporus by 28S rDNA sequencing. The infection was cured after isavuconazole therapy, recovery of the immune system and surgical resection of lung lesions. This is the first description of C. pachyzygosporus as human pathogen and second case report of invasive conidiobolomycosis from a European country

    Task-Based Model Observer Assessment of A Partial Model-Based Iterative Reconstruction Algorithm in Thoracic Oncologic Multidetector CT.

    Get PDF
    To investigate the impact of a partial model-based iterative reconstruction (ASiR-V) on image quality in thoracic oncologic multidetector computed tomography (MDCT), using human and mathematical model observers. Twenty cancer patients examined with regular-dose thoracic-abdominal-pelvic MDCT were retrospectively included. Thoracic images reconstructed using a sharp kernel and filtered back-projection (reference) or ASiR-V (0-100%, 20% increments; follow-up) were analysed by three thoracic radiologists. Advanced quantitative physical metrics, including detectability indexes of simulated 4-mm-diameter solid non-calcified nodules and ground-glass opacities, were computed at regular and reduced doses using a custom-designed phantom. All three radiologists preferred higher ASiR-V levels (best = 80%). Increasing ASiR-V substantially decreased noise magnitude, with slight changes in noise texture. For high-contrast objects, changing the ASiR-V level had no major effect on spatial resolution; whereas for lower-contrast objects, increasing ASiR-V substantially decreased spatial resolution, more markedly at reduced dose. For both high- and lower-contrast pulmonary lesions, detectability remained excellent, regardless of ASiR-V and dose levels, and increased significantly with increasing ASiR-V levels (all p < 0.001). While high ASiR-V levels (80%) are recommended to detect solid non-calcified nodules and ground-glass opacities in regular-dose thoracic oncologic MDCT, care must be taken because, for lower-contrast pulmonary lesions, high ASiR-V levels slightly change noise texture and substantially decrease spatial resolution, more markedly at reduced dose

    Impact of extracardiac findings during cardiac MR on patient management and outcome.

    Get PDF
    Cardiac magnetic resonance (CMR) is increasingly used to assess heart diseases. Relevant non-cardiac diseases may also be incidentally found on CMR images. The aim of this study was to determine the prevalence and nature of incidental extra-cardiac findings (IEF) and their clinical impact in non-selected patients referred for CMR. MR images of 762 consecutive patients (515 men, age: 56±18 years) referred for CMR were prospectively interpreted by 2 radiologists blinded for any previous imaging study. IEFs were classified as major when requiring treatment, follow-up, or further investigation. Clinical follow-up was performed by checking hospital information records and by calling referring physicians. The 2 endpoints were: 1) non-cardiac death and new treatment related to major IEFs, and 2) hospitalization related to major IEFs during follow-up. Major IEFs were proven in 129 patients (18.6% of the study population), 14% of those being unknown before CMR. During 15±6 month follow-up, treatment of confirmed major IEFs was initiated in 1.4%, and no non-cardiac deaths occurred. Hospitalization occurred in 8 patients (1.0% of the study population) with confirmed major IEFs and none occurred in the remaining 110 patients with unconfirmed/unexplored major IEFs (p<0.001). Screening for major IEFs in a population referred for routine CMR changed management in 1.4% of patients. Major IEFs unknown before CMR but without further exploration, however, carried a favorable prognosis over a follow-up period of 15 months

    MR Volumetry of Lung Nodules: A Pilot Study.

    Get PDF
    Introduction: Computed tomography (CT) is currently the reference modality for the detection and follow-up of pulmonary nodules. While 2D measurements are commonly used in clinical practice to assess growth, increasingly 3D volume measurements are being recommended. The goal of this pilot study was to evaluate preliminarily the capabilities of 3D MRI using ultra-short echo time for lung nodule volumetry, as it would provide a radiation-free modality for this task. Material and Methods: Artificial nodules were manufactured out of Agar and measured using an ultra-short echo time MRI sequence. CT data were also acquired as a reference. Image segmentation was carried out using an algorithm based on signal intensity thresholding (SIT). For comparison purposes, we also performed manual slice by slice segmentation. Volumes obtained with MRI and CT were compared. Finally, the volumetry of a lung nodule was evaluated in one human subject in comparison with CT. Results: Using the SIT technique, minimal bias was observed between CT and MRI across the entire range of volumes (2%) with limits of agreement below 14%. Comparison of manually segmented MRI and CT resulted in a larger bias (8%) and wider limits of agreement (-23% to 40%). In vivo, nodule volume differed of <16% between modalities with the SIT technique. Conclusion: This pilot study showed very good concordance between CT and UTE-MRI to quantify lung nodule volumes, in both a phantom and human setting. Our results enhance the potential of MRI to quantify pulmonary nodule volume with similar performance to CT
    corecore