4,130 research outputs found
Light pseudoscalar eta and H->eta eta decay in the simplest little Higgs mode
The SU(3) simplest little Higgs model in its original framework without the
so-called mu term inevitably involves a massless pseudoscalar boson eta, which
is problematic for b-physics and cosmological axion limit. With the mu term
introduced by hand, the eta boson acquires mass m_eta ~ mu, which can be
lighter than half the Higgs boson mass in a large portion of the parameter
space. In addition, the introduced mu term generates sizable coupling of
H-eta-eta. The Higgs boson can dominantly decay into a pair of eta's especially
when mH below the WW threshold. Another new decay channel of H->Z+eta can be
dominant or compatible with H -> WW for mH above the Z+eta threshold. We show
that the LEP bound on the Higgs boson mass is loosened to some extent due to
this new H->eta eta decay channel as well as the reduced coupling of H-Z-Z. The
Higgs boson mass bound falls to about 110 GeV for f=3-4 TeV. Since the eta
boson decays mainly into a bb pair, H-> eta eta -> 4b and H-> Z eta -> Z bb
open up other interesting search channels in the pursuit of the Higgs boson in
the future experiments. We discuss on these issues.Comment: major modification considering the simplest little Higgs model with
the mu ter
Light neutralino dark matter in the MSSM and its implication for LHC searches for staus
It was shown in a previous study that a lightest neutralino with mass below
30 GeV was severely constrained in the minimal supersymmetric standard model
(MSSM), unless it annihilates via a light stau and thus yields the observed
dark matter abundance. In such a scenario, while the stau is the
next-to-lightest supersymmetric particle (NLSP), the charginos and the other
neutralinos as well as sleptons of the first two families are also likely to be
not too far above the mass bounds laid down by the Large Electron Positron
(LEP) collider. As the branching ratios of decays of the charginos and the
next-to-lightest neutralino into staus are rather large, one expects
significant rates of tau-rich final states in such a case. With this in view,
we investigate the same-sign ditau and tri-tau signals of this scenario at the
Large Hadron Collider (LHC) for two MSSM benchmark points corresponding to
light neutralino dark matter. The associated signal rates for these channels
are computed, for the centre-of-mass energy of 14 TeV. We find that both
channels lead to appreciable rates if the squarks and the gluino are not too
far above a TeV, thus allowing to probe scenarios with light neutralinos in the
14 TeV LHC run with 10-100 fb^{-1}.Comment: 19p, 4 Fig
Interpreting a 1 fb^-1 ATLAS Search in the Minimal Anomaly Mediated Supersymmetry Breaking Model
Recent LHC data significantly extend the exclusion limits for supersymmetric
particles, particularly in the jets plus missing transverse momentum channels.
The most recent such data have so far been interpreted by the experiment in
only two different supersymmetry breaking models: the constrained minimal
supersymmetric standard model (CMSSM) and a simplified model with only squarks
and gluinos and massless neutralinos. We compare kinematical distributions of
supersymmetric signal events predicted by the CMSSM and anomaly mediated
supersymmetry breaking (mAMSB) before calculating exclusion limits in mAMSB. We
obtain a lower limit of 900 GeV on squark and gluino masses at the 95%
confidence level for the equal mass limit, tan(beta)=10 and mu>0.Comment: 18 pages, 11 figure
SUSY parameter determination at the LHC using cross sections and kinematic edges
We study the determination of supersymmetric parameters at the LHC from a
global fit including cross sections and edges of kinematic distributions. For
illustration, we focus on a minimal supergravity scenario and discuss how well
it can be constrained at the LHC operating at 7 and 14 TeV collision energy,
respectively. We find that the inclusion of cross sections greatly improves the
accuracy of the SUSY parameter determination, and allows to reliably extract
model parameters even in the initial phase of LHC data taking with 7 TeV
collision energy and 1/fb integrated luminosity. Moreover, cross section
information may be essential to study more general scenarios, such as those
with non-universal gaugino masses, and distinguish them from minimal,
universal, models.Comment: 22 pages, 8 figure
The decay Bs -> mu+ mu-: updated SUSY constraints and prospects
We perform a study of the impact of the recently released limits on BR(Bs ->
mu+ mu-) by LHCb and CMS on several SUSY models. We show that the obtained
constraints can be superior to those which are derived from direct searches for
SUSY particles in some scenarios, and the use of a double ratio of purely
leptonic decays involving Bs -> mu+ mu- can further strengthen such
constraints. We also discuss the experimental sensitivity and prospects for
observation of Bs -> mu+ mu- during the sqrt(s)=7 TeV run of the LHC, and its
potential implications.Comment: 30 pages, 21 figures. v2: Improved discussion of constraints from B
-> tau nu, references adde
Supersymmetry and the LHC Inverse Problem
Given experimental evidence at the LHC for physics beyond the standard model,
how can we determine the nature of the underlying theory? We initiate an
approach to studying the "inverse map" from the space of LHC signatures to the
parameter space of theoretical models within the context of low-energy
supersymmetry, using 1808 LHC observables including essentially all those
suggested in the literature and a 15 dimensional parametrization of the
supersymmetric standard model. We show that the inverse map of a point in
signature space consists of a number of isolated islands in parameter space,
indicating the existence of "degeneracies"--qualitatively different models with
the same LHC signatures. The degeneracies have simple physical
characterizations, largely reflecting discrete ambiguities in electroweak-ino
spectrum, accompanied by small adjustments for the remaining soft parameters.
The number of degeneracies falls in the range 1<d<100, depending on whether or
not sleptons are copiously produced in cascade decays. This number is large
enough to represent a clear challenge but small enough to encourage looking for
new observables that can further break the degeneracies and determine at the
LHC most of the SUSY physics we care about. Degeneracies occur because
signatures are not independent, and our approach allows testing of any new
signature for its independence. Our methods can also be applied to any other
theory of physics beyond the standard model, allowing one to study how model
footprints differ in signature space and to test ways of distinguishing
qualitatively different possibilities for new physics at the LHC.Comment: 55 pages, 30 figure
Determining R-parity violating parameters from neutrino and LHC data
In supersymmetric models neutrino data can be explained by R-parity violating
operators which violate lepton number by one unit. The so called bilinear model
can account for the observed neutrino data and predicts at the same time
several decay properties of the lightest supersymmetric particle. In this paper
we discuss the expected precision to determine these parameters by combining
neutrino and LHC data and discuss the most important observables. We show that
one can expect a rather accurate determination of the underlying R-parity
parameters assuming mSUGRA relations between the R-parity conserving ones and
discuss briefly also the general MSSM as well as the expected accuracies in
case of a prospective e+ e- linear collider. An important observation is that
several parameters can only be determined up to relative signs or more
generally relative phases.Comment: 13 pages, 13 figure
Implications of LHC Searches on SUSY Particle Spectra: The pMSSM Parameter Space with Neutralino Dark Matter
We study the implications of LHC searches on SUSY particle spectra using flat
scans of the 19-parameter pMSSM phase space. We apply constraints from flavour
physics, g_mu-2, dark matter and earlier LEP and Tevatron searches. The
sensitivity of the LHC SUSY searches with jets, leptons and missing energy is
assessed by reproducing with fast simulation the recent CMS analyses after
validation on benchmark points. We present results in terms of the fraction of
pMSSM points compatible with all the constraints which are excluded by the LHC
searches with 1 fb^{-1} and 15 fb^{-1} as a function of the mass of strongly
and weakly interacting SUSY particles. We also discuss the suppression of Higgs
production cross sections for the MSSM points not excluded and contrast the
region of parameter space tested by the LHC data with the constraints from dark
matter direct detection experiments.Comment: 14 pages, 13 figures. v2: increased statistics, to appear in EPJ
- âŠ