840 research outputs found

    NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation

    Get PDF
    Amino functionalized MOFs (NH2-MIL-53(Al) or NH2-MIL-101(Al)) were used as dispersed phase in the fabrication of mixed matrix membranes (MMMs) with a polymer matrix of sulfur-containing copolyimides (6FDA:DSDA/4MPD:4,4’-SDA 1:1 (polymer P1) or 6FDA/4MPD:4,4’-SDA 1:1 (polymer P2)). The gas separation properties of the MMMs obtained were tested for permeation of H2, CH4 and CO2. Membranes comprising polymer P1 showed better interaction with the fillers used than polymer P2, and therefore better separation properties, especially for NH2-MIL-101(Al). Upon NH2-MIL-101(Al) loading the performance of pure polymer was improved approaching the Robeson 1991 H2/CH4 and CO2/CH4 upper bound limits with high permeabilities, e.g. 114, 71 and 1.7 Barrer for H2, CO2 and CH4, respectively, using 10 wt.% NH2-MIL-101(Al)@P1. These improvements are related to the pore size of the filler, the flexibility and functional groups of sulfone-containing DSDA, and polymer rigidification

    Light curing time reduction: in vitro evaluation of new intensive light-emitting diode curing units

    Get PDF
    The aim of the present in vitro study was to establish the minimum necessary curing time to bond stainless steel brackets (Mini Diamond Twin™) using new, intensive, light-emitting diode (LED) curing units. Seventy-five bovine primary incisors were divided into five equal groups. A standard light curing adhesive (Transbond™ XT) was used to bond the stainless steel brackets using different lamps and curing times. Two groups were bonded using an intensive LED curing lamp (Ortholux™ LED) for 5 and 10 seconds. Two more groups were bonded using another intensive LED curing device (Ultra-Lume™ LED 5) also for 5 and 10 seconds. Finally, a high-output halogen lamp (Optilux™ 501) was used for 40 seconds to bond the final group, which served as a positive control. All teeth were fixed in hard acrylic and stored for 24 hours in water at 37°C. Shear bond strength (SBS) was measured using an Instron testing machine. Weibull distribution and analysis of variance were used to test for significant differences. The SBS values obtained were significantly different between groups (P < 0.001). When used for 10 seconds, the intensive LED curing units achieved sufficient SBS, comparable with the control. In contrast, 5 seconds resulted in significantly lower SBS. The adhesive remnant index (ARI) was not significantly affected. A curing time of 10 seconds was found to be sufficient to bond metallic brackets to incisors using intensive LED curing units. These new, comparatively inexpensive, curing lamps seem to be an advantageous alternative to conventional halogen lamps for bonding orthodontic bracket

    Nuclear signatures in high-harmonic generation from laser-driven muonic atoms

    Get PDF
    High-harmonic generation from muonic atoms exposed to intense laser fields is considered. Our particular interest lies in effects arising from the finite nuclear mass and size. We numerically perform a fully quantum mechanical treatment of the muon-nucleus dynamics by employing modified soft-core and hard-core potentials. It is shown that the position of the high-energy cutoff of the harmonic spectrum depends on the nuclear mass, while the height of the spectral plateau is sensitive to the nuclear radius. We also demonstrate that Îł\gamma-ray harmonics can be generated from muonic atoms in ultrastrong VUV fields, which have potential to induce photo-nuclear reactions.Comment: 5 pages, 3 figure

    A solid state light-matter interface at the single photon level

    Full text link
    Coherent and reversible mapping of quantum information between light and matter is an important experimental challenge in quantum information science. In particular, it is a decisive milestone for the implementation of quantum networks and quantum repeaters. So far, quantum interfaces between light and atoms have been demonstrated with atomic gases, and with single trapped atoms in cavities. Here we demonstrate the coherent and reversible mapping of a light field with less than one photon per pulse onto an ensemble of 10 millions atoms naturally trapped in a solid. This is achieved by coherently absorbing the light field in a suitably prepared solid state atomic medium. The state of the light is mapped onto collective atomic excitations on an optical transition and stored for a pre-programmed time up of to 1 mu s before being released in a well defined spatio-temporal mode as a result of a collective interference. The coherence of the process is verified by performing an interference experiment with two stored weak pulses with a variable phase relation. Visibilities of more than 95% are obtained, which demonstrates the high coherence of the mapping process at the single photon level. In addition, we show experimentally that our interface allows one to store and retrieve light fields in multiple temporal modes. Our results represent the first observation of collective enhancement at the single photon level in a solid and open the way to multimode solid state quantum memories as a promising alternative to atomic gases.Comment: 5 pages, 5 figures, version submitted on June 27 200

    Automating Data Rights

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 18181 “Towards Accountable Systems”, which took place from April 29th to May 4th, 2018, at Schloss Dagstuhl – Leibniz Center for Informatics. Researchers and practitioners from academia and industry were brought together covering broad fields from computer and information science, public policy and law. Many risks and opportunities were discussed that relate to the alignment of systems technologies with developing legal and regulatory requirements and evolving user expectations. This report summarises outcomes of the seminar by highlighting key future research directions and challenges that lie on the path to developing systems that better align with accountability concerns

    Towards high-speed optical quantum memories

    Full text link
    Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers and quantum communications. So far, quantum memories have operated with bandwidths that limit data rates to MHz. Here we report the coherent storage and retrieval of sub-nanosecond low intensity light pulses with spectral bandwidths exceeding 1 GHz in cesium vapor. The novel memory interaction takes place via a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field. This allows for an increase in data rates by a factor of almost 1000 compared to existing quantum memories. The memory works with a total efficiency of 15% and its coherence is demonstrated by directly interfering the stored and retrieved pulses. Coherence times in hot atomic vapors are on the order of microsecond - the expected storage time limit for this memory.Comment: 13 pages, 5 figure

    MeV neutrinos in double beta decay

    Get PDF
    The effect of Majorana neutrinos in the MeV mass range on the double beta decay of various isotopes is studied on pure phenomenological arguments. By using only experimental half life data, limits on the mixing parameter Ueh2U_{eh}^2 of the order 10−7^{-7} can be derived. Also the possible achievements of upcoming experiments and some consequences are outlined.Comment: 7 pages, 6 uudecoded EPS-figure

    Shell Model Study of the Double Beta Decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe

    Get PDF
    The lifetimes for the double beta decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe are calculated using very large shell model spaces. The two neutrino matrix elements obtained are in good agreement with the present experimental data. For <1<1 eV we predict the following upper bounds to the half-lives for the neutrinoless mode: T1/2(0ν)(Ge)>1.85 1025yr.T^{(0\nu)}_{1/2}(Ge) > 1.85\,10^{25} yr., T1/2(0ν)(Se)>2.36 1024yr.T^{(0\nu)}_{1/2}(Se) > 2.36\,10^{24} yr. and T1/2(0ν)(Xe)>1.21 1025yrT^{(0\nu)}_{1/2}(Xe) > 1.21\,10^{25} yr. These results are the first from a new generation of Shell Model calculations reaching O(108^{8}) dimensions
    • …
    corecore