1,355 research outputs found
COMPASS: a 2.6m telescope for CMBR polarization studies
COMPASS (COsmic Microwave Polarization at Small Scale) is an experiment devoted to measuring the polarization of the CMBR. Its design and characteristics are presented
A Limit on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales
A ground-based polarimeter, PIQUE, operating at 90 GHz has set a new limit on
the magnitude of any polarized anisotropy in the cosmic microwave background.
The combination of the scan strategy and full width half maximum beam of 0.235
degrees gives broad window functions with average multipoles, l = 211+294-146
and l = 212+229-135 for the E- and B-mode window functions, respectively. A
joint likelihood analysis yields simultaneous 95% confidence level flat band
power limits of 14 and 13 microkelvin on the amplitudes of the E- and B-mode
angular power spectra, respectively. Assuming no B-modes, a 95% confidence
limit of 10 microkelvin is placed on the amplitude of the E-mode angular power
spectrum alone.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter
Effect of Artificial Tears on Preoperative Keratometry and Refractive Precision in Cataract Surgery
Christian Nilsen,1 Morten Gundersen,1 Per Graae Jensen,1 Kjell Gunnar Gundersen,1 Richard Potvin,2 Øygunn A Utheim,3– 5 Bjørn Gjerdrum1 1Ifocus Eye Clinic, Haugesund, Norway; 2Science in Vision, Frisco, TX, USA; 3Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; 4Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; 5The Norwegian Dry Eye Clinic, Oslo, NorwayCorrespondence: Christian Nilsen, Ifocus Eye Clinic, Strandgaten 203, Bergen, 5004, Norway, Tel +47 97189598, Email [email protected]: The primary objective was to investigate if treatment with artificial tears affected the variability of keratometry measurements for subjects with dry eyes prior to cataract surgery. The secondary objectives were to investigate whether treatment with artificial tears improved refractive precision and whether subjects with non-dry eyes had better refractive precision than subjects with dry eyes.Design: Prospective randomized controlled trial with three arms.Patients and methods: Dry eye diagnostics according to DEWS II were performed, and subjects with dry eyes were randomized to no treatment (group A1) or treatment with artificial tears two weeks prior to cataract surgery (group A2), with the third group (Group B, non-dry eyes) as a control. Keratometry was performed twice at baseline and twice after two weeks at the time of cataract surgery with three different optical biometers. The change in mean variability of keratometry (average K and magnitude of vector differences) and percentages of outliers after two weeks versus baseline were compared for group A2. The refractive and astigmatism prediction errors were calculated eight weeks after cataract surgery and compared for all three groups.Results: One hundred thirty-one subjects were available for analysis. There was no statistically significant difference in the mean variability of keratometry or percentages of outliers for group A2 from baseline to the time of cataract surgery. There was no statistically significant difference in refractive precision (absolute error and astigmatism prediction error) between any groups.Conclusion: Subjects with dry eyes (treated and non-treated) achieved the same refractive precision and percentages of outliers as subjects with non-dry eyes. Treatment with artificial tears for two weeks appeared inadequate to significantly affect variability in biometric measurements for patients with dry eyes prior to cataract surgery. DEWS II criteria for DED may not be optimal in a cataract setting.Keywords: Cataract surgery, non-invasive keratography tear break-up time, ocular surface staining, osmolarity, artificial tear
Breaking the Redshift Deadlock - I: Constraining the star formation history of galaxies with sub-millimetre photometric redshifts
Future extragalactic sub-millimetre and millimetre surveys have the potential
to provide a sensitive census of the level of obscured star formation in
galaxies at all redshifts. While in general there is good agreement between the
source counts from existing SCUBA (850um) and MAMBO (1.25mm) surveys of
different depths and areas, it remains difficult to determine the redshift
distribution and bolometric luminosities of the sub-millimetre and millimetre
galaxy population. This is principally due to the ambiguity in identifying an
individual sub-millimetre source with its optical, IR or radio counterpart
which, in turn, prevents a confident measurement of the spectroscopic redshift.
Additionally, the lack of data measuring the rest-frame FIR spectral peak of
the sub-millimetre galaxies gives rise to poor constraints on their rest-frame
FIR luminosities and star formation rates. In this paper we describe
Monte-Carlo simulations of ground-based, balloon-borne and satellite
sub-millimetre surveys that demonstrate how the rest-frame FIR-sub-millimetre
spectral energy distributions (250-850um) can be used to derive photometric
redshifts with an r.m.s accuracy of +/- 0.4 over the range 0 < z < 6. This
opportunity to break the redshift deadlock will provide an estimate of the
global star formation history for luminous optically-obscured galaxies [L(FIR)
> 3 x 10^12 Lsun] with an accuracy of 20 per cent.Comment: 14 pages, 22 figures, submitted to MNRAS, replaced with accepted
versio
On the eigenproblems of PT-symmetric oscillators
We consider the non-Hermitian Hamiltonian H=
-\frac{d^2}{dx^2}+P(x^2)-(ix)^{2n+1} on the real line, where P(x) is a
polynomial of degree at most n \geq 1 with all nonnegative real coefficients
(possibly P\equiv 0). It is proved that the eigenvalues \lambda must be in the
sector | arg \lambda | \leq \frac{\pi}{2n+3}. Also for the case
H=-\frac{d^2}{dx^2}-(ix)^3, we establish a zero-free region of the
eigenfunction u and its derivative u^\prime and we find some other interesting
properties of eigenfunctions.Comment: 21pages, 9 figure
New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz
We present new measurements of the cosmic microwave background (CMB)
polarization from the final season of the Cosmic Anisotropy Polarization MAPper
(CAPMAP). The data set was obtained in winter 2004-2005 with the 7 m antenna in
Crawford Hill, New Jersey, from 12 W-band (84-100 GHz) and 4 Q-band (36-45 GHz)
correlation polarimeters with 3.3' and 6.5' beamsizes, respectively. After
selection criteria were applied, 956 (939) hours of data survived for analysis
of W-band (Q-band) data. Two independent and complementary pipelines produced
results in excellent agreement with each other. A broad suite of null tests as
well as extensive simulations showed that systematic errors were minimal, and a
comparison of the W-band and Q-band sky maps revealed no contamination from
galactic foregrounds. We report the E-mode and B-mode power spectra in 7 bands
in the range 200 < l < 3000, extending the range of previous measurements to
higher l. The E-mode spectrum, which is detected at 11 sigma significance, is
in agreement with cosmological predictions and with previous work at other
frequencies and angular resolutions. The BB power spectrum provides one of the
best limits to date on B-mode power at 4.8 uK^2 (95% confidence).Comment: 19 pages, 17 figures, 2 tables, submitted to Ap
Genetic diversity of the NE Atlantic sea urchin Strongylocentrotus droebachiensis unveils chaotic genetic patchiness possibly linked to local selective pressure
We compared the genetic differentiation in the green sea urchin Strongylocentrotus droebachiensis from discrete populations on the NE Atlantic coast. By using eight recently developed microsatellite markers, genetic structure was compared between populations from the Danish Strait in the south to the Barents Sea in the north (56–79°N). Urchins are spread by pelagic larvae and may be transported long distances by northwards-going ocean currents. Two main superimposed patterns were identified. The first showed a subtle but significant genetic differentiation from the southernmost to the northernmost of the studied populations and could be explained by an isolation by distance model. The second pattern included two coastal populations in mid-Norway (65°N), NH and NS, as well as the northernmost population of continental Norway (71°N) FV. They showed a high degree of differentiation from all other populations. The explanation to the second pattern is most likely chaotic genetic patchiness caused by introgression from another species, S. pallidus, into S. droebachiensis resulting from selective pressure. Ongoing sea urchin collapse and kelp forests recovery are observed in the area of NH, NS and FV populations. High gene flow between populations spanning more than 22° in latitude suggests a high risk of new grazing events to occur rapidly in the future if conditions for sea urchins are favourable. On the other hand, the possibility of hybridization in association with collapsing populations may be used as an early warning indicator for monitoring purposes.publishedVersio
Structure and evolution of a proviral locus of Glyptapanteles indiensis bracovirus
Background. Bracoviruses (BVs), a group of double-stranded DNA viruses with segmented genomes, are mutualistic endosymbionts of parasitoid wasps. Virus particles are replication deficient and are produced only by female wasps from proviral sequences integrated into the wasp genome. Virus particles are injected along with eggs into caterpillar hosts, where viral gene expression facilitates parasitoid survival and therefore perpetuation of proviral DNA. Here we describe a 223 kbp region of Glyptapanteles indiensis genomic DNA which contains a part of the G. indiensis bracovirus (GiBV) proviral genome. Results. Eighteen of ∼24 GiBV viral segment sequences are encoded by 7 non-overlapping sets of BAC clones, revealing that some proviral segment sequences are separated by long stretches of intervening DNA. Two overlapping BACs, which contain a locus of 8 tandemly arrayed proviral segments flanked on either side by ∼35 kbp of non-packaged DNA, were sequenced and annotated. Structural and compositional analyses of this cluster revealed it exhibits a G+C and nucleotide composition distinct from the flanking DNA. By analyzing sequence polymorphisms in the 8 GiBV viral segment sequences, we found evidence for widespread selection acting on both protein-coding and non-coding DNA. Comparative analysis of viral and proviral segment sequences revealed a sequence motif involved in the excision of proviral genome segments which is highly conserved in two other bracoviruses. Conclusion. Contrary to current concepts of bracovirus proviral genome organization our results demonstrate that some but not all GiBV proviral segment sequences exist in a tandem array. Unexpectedly, non-coding DNA in the 8 proviral genome segments which typically occupies ∼70% of BV viral genomes is under selection pressure suggesting it serves some function(s). We hypothesize that selection acting on GiBV proviral sequences maintains the genetic island-like nature of the cluster of proviral genome segments described herein. In contrast to large differences in the predicted gene composition of BV genomes, sequences that appear to mediate processes of viral segment formation, such as proviral segment excision and circularization, appear to be highly conserved, supporting the hypothesis of a single origin for BVs. © 2007 Desjardins et al; licensee BioMed Central Ltd
Recommended from our members
De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug.
Insects use a diverse array of specialized terpene metabolites as pheromones in intraspecific interactions. In contrast to plants and microbes, which employ enzymes called terpene synthases (TPSs) to synthesize terpene metabolites, limited information from few species is available about the enzymatic mechanisms underlying terpene pheromone biosynthesis in insects. Several stink bugs (Hemiptera: Pentatomidae), among them severe agricultural pests, release 15-carbon sesquiterpenes with a bisabolene skeleton as sex or aggregation pheromones. The harlequin bug, Murgantia histrionica, a specialist pest of crucifers, uses two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol as a male-released aggregation pheromone called murgantiol. We show that MhTPS (MhIDS-1), an enzyme unrelated to plant and microbial TPSs but with similarity to trans-isoprenyl diphosphate synthases (IDS) of the core terpene biosynthetic pathway, catalyzes the formation of (1S,6S,7R)-1,10-bisaboladien-1-ol (sesquipiperitol) as a terpene intermediate in murgantiol biosynthesis. Sesquipiperitol, a so-far-unknown compound in animals, also occurs in plants, indicating convergent evolution in the biosynthesis of this sesquiterpene. RNAi-mediated knockdown of MhTPS mRNA confirmed the role of MhTPS in murgantiol biosynthesis. MhTPS expression is highly specific to tissues lining the cuticle of the abdominal sternites of mature males. Phylogenetic analysis suggests that MhTPS is derived from a trans-IDS progenitor and diverged from bona fide trans-IDS proteins including MhIDS-2, which functions as an (E,E)-farnesyl diphosphate (FPP) synthase. Structure-guided mutagenesis revealed several residues critical to MhTPS and MhFPPS activity. The emergence of an IDS-like protein with TPS activity in M. histrionica demonstrates that de novo terpene biosynthesis evolved in the Hemiptera in an adaptation for intraspecific communication
First Season QUIET Observations: Measurements of CMB Polarization Power Spectra at 43 GHz in the Multipole Range 25 <= ell <= 475
The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43GHz and
95GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to
measure the anisotropy in the polarization of the CMB. QUIET primarily targets
the B modes from primordial gravitational waves. The combination of these
frequencies gives sensitivity to foreground contributions from diffuse Galactic
synchrotron radiation. Between 2008 October and 2010 December, >10,000hours of
data were collected, first with the 19-element 43GHz array (3458hours) and then
with the 90-element 95GHz array. Each array observes the same four fields,
selected for low foregrounds, together covering ~1000deg^2. This paper reports
initial results from the 43GHz receiver which has an array sensitivity to CMB
fluctuations of 69uK sqrt(s). The data were extensively studied with a large
suite of null tests before the power spectra, determined with two independent
pipelines, were examined. Analysis choices, including data selection, were
modified until the null tests passed. Cross correlating maps with different
telescope pointings is used to eliminate a bias. This paper reports the EE, BB
and EB power spectra in the multipole range ell=25-475. With the exception of
the lowest multipole bin for one of the fields, where a polarized foreground,
consistent with Galactic synchrotron radiation, is detected with 3sigma
significance, the E-mode spectrum is consistent with the LCDM model, confirming
the only previous detection of the first acoustic peak. The B-mode spectrum is
consistent with zero, leading to a measurement of the tensor-to-scalar ratio of
r=0.35+1.06-0.87. The combination of a new time-stream double-demodulation
technique, Mizuguchi-Dragone optics, natural sky rotation, and frequent
boresight rotation leads to the lowest level of systematic contamination in the
B-mode power so far reported, below the level of r=0.1Comment: 19 pages, 14 figures, higher quality figures are available at
http://quiet.uchicago.edu/results/index.html; Fixed a typo and corrected
statistical error values used as a reference in Figure 14, showing our
systematic uncertainties (unchanged) vs. multipole; Revision to ApJ accepted
version, this paper should be cited as "QUIET Collaboration et al. (2011)
- …