10,939 research outputs found
A Continuation Method for Nash Equilibria in Structured Games
Structured game representations have recently attracted interest as models
for multi-agent artificial intelligence scenarios, with rational behavior most
commonly characterized by Nash equilibria. This paper presents efficient, exact
algorithms for computing Nash equilibria in structured game representations,
including both graphical games and multi-agent influence diagrams (MAIDs). The
algorithms are derived from a continuation method for normal-form and
extensive-form games due to Govindan and Wilson; they follow a trajectory
through a space of perturbed games and their equilibria, exploiting game
structure through fast computation of the Jacobian of the payoff function. They
are theoretically guaranteed to find at least one equilibrium of the game, and
may find more. Our approach provides the first efficient algorithm for
computing exact equilibria in graphical games with arbitrary topology, and the
first algorithm to exploit fine-grained structural properties of MAIDs.
Experimental results are presented demonstrating the effectiveness of the
algorithms and comparing them to predecessors. The running time of the
graphical game algorithm is similar to, and often better than, the running time
of previous approximate algorithms. The algorithm for MAIDs can effectively
solve games that are much larger than those solvable by previous methods
Real time plasma equilibrium reconstruction in a Tokamak
The problem of equilibrium of a plasma in a Tokamak is a free boundary
problemdescribed by the Grad-Shafranov equation in axisymmetric configurations.
The right hand side of this equation is a non linear source, which represents
the toroidal component of the plasma current density. This paper deals with the
real time identification of this non linear source from experimental
measurements. The proposed method is based on a fixed point algorithm, a finite
element resolution, a reduced basis method and a least-square optimization
formulation
Improved position measurement of nano electromechanical systems using cross correlations
We consider position measurements using the cross-correlated output of two
tunnel junction position detectors. Using a fully quantum treatment, we
calculate the equation of motion for the density matrix of the coupled
detector-detector-mechanical oscillator system. After discussing the presence
of a bound on the peak-to-background ratio in a position measurement using a
single detector, we show how one can use detector cross correlations to
overcome this bound. We analyze two different possible experimental
realizations of the cross correlation measurement and show that in both cases
the maximum cross-correlated output is obtained when using twin detectors and
applying equal bias to each tunnel junction. Furthermore, we show how the
double-detector setup can be exploited to drastically reduce the added
displacement noise of the oscillator.Comment: 9 pages, 1 figure; v2: new Sec.
The Refractory-to-Ice Mass Ratio in Comets
We review the complex relationship between the dust-to-gas mass ratio usually estimated in the material lost by comets, and the Refractory-to-Ice mass ratio inside the nucleus, which constrains the origin of comets. Such a relationship is dominated by the mass transfer from the perihelion erosion to fallout over most of the nucleus surface. This makes the Refractory-to-Ice mass ratio inside the nucleus up to ten times larger than the dust-to-gas mass ratio in the lost material, because the lost material is missing most of the refractories which were inside the pristine nucleus before the erosion. We review the Refractory-to-Ice mass ratios available for the comet nuclei visited by space missions, and for the Kuiper Belt Objects with well defined bulk density, finding the 1-σ lower limit of 3. Therefore, comets and KBOs may have less water than CI-chondrites, as predicted by models of comet formation by the gravitational collapse of cm-sized pebbles driven by streaming instabilities in the protoplanetary disc
Dual Liquid Flyback Booster for the Space Shuttle
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuffle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuffle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper 'Conceptual Design for a Space Shuttle Liquid Flyback Booster' will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs
Polarization and angular distribution of the radiation emitted in laser-assisted recombination
The effect of an intense external linear polarized radiation field on the
angular distributions and polarization states of the photons emitted during the
radiative recombination is investigated. It is predicted, on symmetry grounds,
and corroborated by numerical calculations of approximate recombination rates,
that emission of elliptically polarized photons occurs when the momentum of the
electron beam is not aligned to the direction of the oscillating field.
Moreover, strong modifications to the angular distributions of the emitted
photons are induced by the external radiation field.Comment: 5 pages, 3 figure
HIV with contact-tracing: a case study in Approximate Bayesian Computation
Missing data is a recurrent issue in epidemiology where the infection process
may be partially observed. Approximate Bayesian Computation, an alternative to
data imputation methods such as Markov Chain Monte Carlo integration, is
proposed for making inference in epidemiological models. It is a
likelihood-free method that relies exclusively on numerical simulations. ABC
consists in computing a distance between simulated and observed summary
statistics and weighting the simulations according to this distance. We propose
an original extension of ABC to path-valued summary statistics, corresponding
to the cumulated number of detections as a function of time. For a standard
compartmental model with Suceptible, Infectious and Recovered individuals
(SIR), we show that the posterior distributions obtained with ABC and MCMC are
similar. In a refined SIR model well-suited to the HIV contact-tracing data in
Cuba, we perform a comparison between ABC with full and binned detection times.
For the Cuban data, we evaluate the efficiency of the detection system and
predict the evolution of the HIV-AIDS disease. In particular, the percentage of
undetected infectious individuals is found to be of the order of 40%
The Functional Derivation of Master Equations
Master equations describe the quantum dynamics of open systems interacting
with an environment. They play an increasingly important role in understanding
the emergence of semiclassical behavior and the generation of entropy, both
being related to quantum decoherence. Presently we derive the exact master
equation for a homogeneous scalar Higgs or inflaton like field coupled to an
environment field represented by an infinite set of harmonic oscillators. Our
aim is to demonstrate a derivation directly from the path integral
representation of the density matrix propagator. Applications and
generalizations of this result are discussed.Comment: 10 pages; LaTex. - Contribution to the workshop Hadron Physics VI,
March 1998, Florianopolis (Brazil); proceedings, E. Ferreira et al., eds.
(World Scientific). Replaced by slightly modified published versio
- …