2 research outputs found

    Role of lepton flavor violating (LFV) muon decay in Seesaw model and LSND

    Get PDF
    The aim of the work is to study LFV in a newly proposed Seesaw model of neutrino mass and to see whether it could explain LSND excess. The motivation of this Seesaw model was that there was no new physics beyond the TeV scale. By studying \mu \to 3e in this model, it is shown that the upper bound on the branching ratio requires Higgs mass m_{h} of a new scalar doublet with lepton number L=-1 needed in the model has to be about 9 TeV. The predicted branching ratio for \mu \to e\nu_{l}\bar{\nu}_{l} is too small to explain the LSND. PACS: 11.30.Hv, 14.60.PqComment: 05 pages, three figures, the version to appear in PR

    Matter Effects on Neutrino Oscillations in Long Baseline Experiments

    Full text link
    We calculate matter effects on neutrino oscillations relevant for long baseline experiments. In particular, we compare the results obtained with constant density along the neutrino path versus results obtained by incorporating the actual density profiles in the Earth. We study the dependence of the oscillation signal on both E/Δmatm2E/\Delta m^2_{atm} and on the angles in the leptonic mixing matrix. We also comment on the influence of Δmsol2\Delta m^2_{sol} on the oscillations. The results show quantitatively how, as a function of these input parameters, matter effects can cause significant (25 %) changes in the oscillation probabilities. An important conclusion is that matter effects can be useful in amplifying certain neutrino oscillation signals and helping one to obtain measurements of mixing parameters and the magnitude and sign of Δmatm2\Delta m^2_{atm}.Comment: 26 pages, Latex, 17 postscript figures, published version, some references adde
    corecore