22 research outputs found

    Hypomethylation of Intragenic LINE-1 Represses Transcription in Cancer Cells through AGO2

    Get PDF
    In human cancers, the methylation of long interspersed nuclear element -1 (LINE-1 or L1) retrotransposons is reduced. This occurs within the context of genome wide hypomethylation, and although it is common, its role is poorly understood. L1s are widely distributed both inside and outside of genes, intragenic and intergenic, respectively. Interestingly, the insertion of active full-length L1 sequences into host gene introns disrupts gene expression. Here, we evaluated if intragenic L1 hypomethylation influences their host gene expression in cancer. First, we extracted data from L1base (http://l1base.molgen.mpg.de), a database containing putatively active L1 insertions, and compared intragenic and intergenic L1 characters. We found that intragenic L1 sequences have been conserved across evolutionary time with respect to transcriptional activity and CpG dinucleotide sites for mammalian DNA methylation. Then, we compared regulated mRNA levels of cells from two different experiments available from Gene Expression Omnibus (GEO), a database repository of high throughput gene expression data, (http://www.ncbi.nlm.nih.gov/geo) by chi-square. The odds ratio of down-regulated genes between demethylated normal bronchial epithelium and lung cancer was high (p<1Eβˆ’27; ORβ€Š=β€Š3.14; 95% CIβ€Š=β€Š2.54–3.88), suggesting cancer genome wide hypomethylation down-regulating gene expression. Comprehensive analysis between L1 locations and gene expression showed that expression of genes containing L1s had a significantly higher likelihood to be repressed in cancer and hypomethylated normal cells. In contrast, many mRNAs derived from genes containing L1s are elevated in Argonaute 2 (AGO2 or EIF2C2)-depleted cells. Hypomethylated L1s increase L1 mRNA levels. Finally, we found that AGO2 targets intronic L1 pre-mRNA complexes and represses cancer genes. These findings represent one of the mechanisms of cancer genome wide hypomethylation altering gene expression. Hypomethylated intragenic L1s are a nuclear siRNA mediated cis-regulatory element that can repress genes. This epigenetic regulation of retrotransposons likely influences many aspects of genomic biology

    Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications

    Get PDF
    Epigenetic changes in long interspersed nuclear element-1s (LINE-1s or L1s) occur early during the process of carcinogenesis. A lower methylation level (hypomethylation) of LINE-1 is common in most cancers, and the methylation level is further decreased in more advanced cancers. Consequently, several previous studies have suggested the use of LINE-1 hypomethylation levels in cancer screening, risk assessment, tumor staging, and prognostic prediction. Epigenomic changes are complex, and global hypomethylation influences LINE-1s in a generalized fashion. However, the methylation levels of some loci are dependent on their locations. The consequences of LINE-1 hypomethylation are genomic instability and alteration of gene expression. There are several mechanisms that promote both of these consequences in cis. Therefore, the methylation levels of different sets of LINE-1s may represent certain phenotypes. Furthermore, the methylation levels of specific sets of LINE-1s may indicate carcinogenesis-dependent hypomethylation. LINE-1 methylation pattern analysis can classify LINE-1s into one of three classes based on the number of methylated CpG dinucleotides. These classes include hypermethylation, partial methylation, and hypomethylation. The number of partial and hypermethylated loci, but not hypomethylated LINE-1s, is different among normal cell types. Consequently, the number of hypomethylated loci is a more promising marker than methylation level in the detection of cancer DNA. Further genome-wide studies to measure the methylation level of each LINE-1 locus may improve PCR-based methylation analysis to allow for a more specific and sensitive detection of cancer DNA or for an analysis of certain cancer phenotypes

    Chi-square matrix: An approach for building-block identification

    No full text
    Abstract. This paper presents a line of research in genetic algorithms (GAs), called building-block identification. The building blocks (BBs) are common structures inferred from a set of solutions. In simple GA, crossover operator plays an important role in mixing BBs. However, the crossover probably disrupts the BBs because the cut point is chosen at random. Therefore the BBs need to be identified explicitly so that the solutions are efficiently mixed. Let S be a set of binary solutions and the solution s = b1... bβ„“, bi ∈ {0, 1}. We construct a symmetric matrix of which the element in row i and column j, denoted by mij, is the chi-square of variables bi and bj. The larger the mij is, the higher the dependency is between bit i and bit j. If mij is high, bit i and bit j should be passed together to prevent BB disruption. Our approach is validated for additively decomposable functions (ADFs) and hierarchically decomposable functions (HDFs). In terms of scalability, our approach shows a polynomial relationship between the number of function evaluations required to reach the optimum and the problem size. A comparison between the chi-square matrix and the hierarchical Bayesian optimization algorithm (hBOA) shows that the matrix computation is 10 times faster and uses 10 times less memory than constructing the Bayesian network.

    Simultaneity matrix for solving hierarchically decomposable functions

    No full text
    Abstract. The simultaneity matrix is an β„“Γ—β„“ matrix of numbers. It is constructed according to a set of β„“-bit solutions. The matrix element mij is the degree of linkage between bit positions i and j. To exploit the matrix, we partition {0,...,β„“ βˆ’ 1} by putting i and j in the same partition subset if mij is significantly high. The partition represents the bit positions of building blocks (BBs). The partition is used in solution recombination so that the bits governed by the same partition subset are passed together. It can be shown that by exploiting the simultaneity matrix the hierarchically decomposable functions can be solved in a polynomial relationship between the number of function evaluations required to reach the optimum and the problem size. A comparison to the hierarchical Bayesian optimization algorithm (hBOA) is made. The hBOA uses less number of function evaluations than that of our algorithm. However, computing the matrix is 10 times faster and uses 10 times less memory than constructing Bayesian network.
    corecore