11 research outputs found

    The first-year growth response to growth hormone treatment predicts the long-term prepubertal growth response in children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pretreatment auxological variables, such as birth size and parental heights, are important predictors of the growth response to GH treatment. For children with missing pretreatment data, published prediction models cannot be used.</p> <p>The objective was to construct and validate a prediction model for children with missing background data based on the observed first-year growth response to GH. The accuracy and reliability of the model should be comparable with our previously published prediction model relying on pretreatment data. The design used was mathematical curve fitting on observed growth response data from children treated with a GH dose of 33 μg/kg/d.</p> <p>Methods</p> <p>Growth response data from 162 prepubertal children born at term were used to construct the model; the group comprised of 19% girls, 80% GH-deficient and 23% born SGA. For validation, data from 205 other children fulfilling the same inclusion and treatment criteria as the model group were used. The model was also tested on data from children born prematurely, children from other continents and children receiving a GH dose of 67 μg/kg/d.</p> <p>Results</p> <p>The GH response curve was similar for all children, but with an individual amplitude. The curve SD score depends on an individual factor combining the effect of dose and growth, the 'Response Score', and time on treatment, making prediction possible when the first-year growth response is known. The prediction interval (± 2 SD<sub>res</sub>) was ± 0.34 SDS for the second treatment year growth response, corresponding to ± 1.2 cm for a 3-year-old child and ± 1.8 cm for a 7-year-old child. For the 1–4-year prediction, the SD<sub>res </sub>was 0.13 SDS/year and for the 1–7-year prediction it was 0.57 SDS (i.e. < 0.1 SDS/year).</p> <p>Conclusion</p> <p>The model based on the observed first-year growth response on GH is valid worldwide for the prediction of up to 7 years of prepubertal growth in children with GHD/ISS, born AGA/SGA and born preterm/term, and can be used as an aid in medical decision making.</p

    Models predicting the growth response to growth hormone treatment in short children independent of GH status, birth size and gestational age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical models can be used to predict individual growth responses to growth hormone (GH) therapy. The aim of this study was to construct and validate high-precision models to predict the growth response to GH treatment of short children, independent of their GH status, birth size and gestational age. As the GH doses are included, these models can be used to individualize treatment.</p> <p>Methods</p> <p>Growth data from 415 short prepubertal children were used to construct models for predicting the growth response during the first years of GH therapy. The performance of the models was validated with data from a separate cohort of 112 children using the same inclusion criteria.</p> <p>Results</p> <p>Using only auxological data, the model had a standard error of the residuals (SD<sub>res</sub>), of 0.23 SDS. The model was improved when endocrine data (GH<sub>max </sub>profile, IGF-I and leptin) collected before starting GH treatment were included. Inclusion of these data resulted in a decrease of the SD<sub>res </sub>to 0.15 SDS (corresponding to 1.1 cm in a 3-year-old child and 1.6 cm in a 7-year old). Validation of these models with a separate cohort, showed similar SD<sub>res </sub>for both types of models. Preterm children were not included in the Model group, but predictions for this group were within the expected range.</p> <p>Conclusion</p> <p>These prediction models can with high accuracy be used to identify short children who will benefit from GH treatment. They are clinically useful as they are constructed using data from short children with a broad range of GH secretory status, birth size and gestational age.</p

    Longitudinal infusion of a complex of insulin-like growth factor-I and IGF-binding protein-3 in five preterm infants: pharmacokinetics and short-term safety

    No full text
    BACKGROUND: In preterm infants, low levels of insulin-like growth factor-I (IGF-1) and IGF binding protein 3 (IGFBP-3) are associated with impaired brain growth and retinopathy of prematurity (ROP). Treatment with IGF-I/IGFBP-3 may be beneficial for brain development and may decrease the prevalence of ROP. METHODS: In a phase II pharmacokinetics and safety study, five infants (three girls) with a median (range) gestational age (GA) of 26 wk + 6 d (26 wk + 0 d to 27 wk + 2 d) and birth weight of 990 (900-1,212) g received continuous intravenous infusion of recombinant human (rh)IGF-I/rhIGFBP-3. Treatment was initiated during the first postnatal day and continued for a median (range) duration of 168 (47-168) h in dosages between 21 and 111 mu g/kg/24h. RESULTS: Treatment with rhIGF-I/rhIGFBP-3 was associated with higher serum IGF-I and IGFBP-3 concentrations (P < 0.001) than model-predicted endogenous levels. Of 74 IGF-I samples measured during study drug infusion, 37 (50%) were within the target range, 4 (5%) were above, and 33 (45%) were below. The predicted dose of rhIGF-I/rhIGFBP-3 required to establish circulating levels of IGF-I within the intrauterine range in a 1,000 g infant was 75-100 mu g/kg/24 h. No hypoglycemia or other adverse effects were recorded. CONCLUSION: In this study, continuous intravenous infusion of rhIGF-I/rhIGFBP-3 was effective in increasing serum concentrations of IGF-I and IGFBP-3, and was found to be safe

    A Pharmacokinetic and Dosing Study of Intravenous Insulin-Like Growth Factor-I and IGF-Binding Protein-3 Complex to Preterm Infants.

    No full text
    In preterm infants, low levels of Insulin like growth factor 1 (IGF-I) have been associated with impaired growth and retinopathy of prematurity. Our objective was to study safety and pharmacokinetics of intravenously administered rhIGF-I with its binding protein 3 (rhIGFBP-3) to preterm infants. At 3 days chronological age, an intravenous 3 hours infusion of rhIGF-I/rhIGFBP-3 was administered followed by serial measurements of IGF-I and IGFBP-3. Infants were evaluated for physiological safety measurements. The individual dose of rhIGF-I ranged from 1 to 12 mug/kg. The study was conducted at Queen Silvia Children's Hospital, Gothenburg, Sweden, between January and November 2007. Five patients (3F) with mean (range) PMA 27 weeks (26-29) and birth weight 1022 grams (810-1310) participated. IGF-I and IGFBP-3 levels before infusion were median (range) 18 (12-28) and 771 (651-1047) ng/ml, respectively. Immediately after study drug infusion, serum IGF-I and IGFBP-3 levels were 38 (25-59) and 838 (754-1182) ng/ml, respectively. Median (range) half-life for IGF-I and IGFBP-3 was 0.79 (0.59-1.42) and 0.87 (0.85-0.94) hours, respectively. Blood glucose, insulin, sodium, potassium and physiological safety measures were within normal ranges. The rhIGF-I/rhIGFBP-3 equimolar proportion was effective in increasing serum IGF-I levels and administration under these study conditions was safe and well tolerated
    corecore