6 research outputs found

    Computational analysis of mechanical stress-strain interaction of a bioresorbable scaffold with blood vessel

    Get PDF
    Crimping and deployment of bioresorbable polymeric scaffold, Absorb, were modelled using finite element method, in direct comparison with Co-Cr alloy drug eluting stent, Xience V. Absorb scaffold has an expansion rate lower than Xience V stent, with a less outer diameter achieved after balloon deflation. Due to the difference in design and material properties, Absorb also shows a higher recoiling than Xience V, which suggests that additional post-dilatation is required to achieve effective treatment for patients with calcified plaques and stiff vessels. However, Absorb scaffold induces significantly lower stresses on the artery-plaque system, which can be clinically beneficial. Eccentric plaque causes complications to stent deployment, especially non-uniform vessel expansion. Also the stress levels in the media and adventitia layers are considerably higher for the plaque with high eccentricity, for which the choice of stents, in terms of materials and designs, will be of paramount importance. Our results imply that the benefits of Absorb scaffolds are amplified in these cases

    Effect of two-year degradation on mechanical interaction between a bioresorbable scaffold and blood vessel

    Get PDF
    This paper aims to evaluate the mechanical behaviour of a bioresorbable polymeric coronary scaffold using finite element method, focusing on scaffold-artery interaction during degradation and vessel remodelling. A series of nonlinear stress-strain responses was constructed to match the experimental measurement of radial stiffness and strength for polymeric scaffolds over 2-year in-vitro degradation times. Degradation process was modelled by incorporating the change of material property as a function of time. Vessel remodelling was realised by changing the size of artery-plaque system manually, according to the clinical data in literature. Over degradation times, stress on the scaffold tended to increase firstly and then decreased gradually, corresponding to the changing yield stress of the scaffold material; whereas the stress on the plaque and arterial layers showed a continuous decrease. In addition, stress reduction was also observed for scaffold, plaque and artery in the simulations with the consideration of vessel remodelling. For the first time, the work offered insights into mechanical interaction between a bioresorbable scaffold and blood vessel during two-year in-vitro degradation, which has significance in assisting with further development of bioresorbable implants for treating cardiovascular diseases

    Computational analysis of mechanical stress–strain interaction of a bioresorbable scaffold with blood vessel

    Get PDF
    This paper was accepted for publication in the journal Journal of Biomechanics and the definitive published version is available at http://dx.doi.org/10.1016/j.jbiomech.2016.05.035Crimping and deployment of bioresorbable polymeric scaffold, Absorb, were modelled using finite element method, in direct comparison with Co-Cr alloy drug eluting stent, Xience V. Absorb scaffold has an expansion rate lower than Xience V stent, with a less outer diameter achieved after balloon deflation. Due to the difference in design and material properties, Absorb also shows a higher recoiling than Xience V, which suggests that additional post-dilatation is required to achieve effective treatment for patients with calcified plaques and stiff vessels. However, Absorb scaffold induces significantly lower stresses on the artery-plaque system, which can be clinically beneficial. Eccentric plaque causes complications to stent deployment, especially non-uniform vessel expansion. Also the stress levels in the media and adventitia layers are considerably higher for the plaque with high eccentricity, for which the choice of stents, in terms of materials and designs, will be of paramount importance. Our results imply that the benefits of Absorb scaffolds are amplified in these cases
    corecore