23,160 research outputs found
Recommended from our members
Pathogenesis of feline enteric coronavirus infection.
Fifty-one specific pathogen-free (SPF) cats 10 weeks to 13 years of age were infected with a cat-to-cat fecal-oral passed strain of feline enteric coronavirus (FECV). Clinical signs ranged from unapparent to a mild and self-limiting diarrhea. Twenty-nine of these cats were FECV naïve before infection and followed sequentially for fecal virus shedding and antibody responses over a period of 8-48 months. Fecal shedding, as determined by real-time polymerase chain reaction (RT-PCR) from rectal swabs, appeared within a week and was significantly higher in kittens than older cats. FECV shedding remained at high levels for 2-10 months before eventually evolving into one of three excretion patterns. Eleven cats shed the virus persistently at varying levels over an observation period of 9-24 months. Eleven cats appeared to have periods of virus shedding interlaced with periods of non-shedding (intermittent or recurrent shedders), and seven cats ceased shedding after 5-19 months (average 12 months). There was no change in the patterns of virus shedding among cats that were excreting FECV at the time of a secondary challenge exposure. Four cats, which had ceased shedding, re-manifested a primary type infection when secondarily infected. Cats with higher feline coronavirus (FCoV) antibody titers were significantly more likely to shed virus, while cats with lower titers were significantly less likely to be shedding. Twenty-two kittens born to experimentally infected project queens began shedding virus spontaneously, but never before 9-10 weeks of age. Natural kittenhood infections appeared to be low grade and abortive. However, a characteristic primary type infection occurred following experimental infection with FECV at 12-15 weeks of age. Pregnancy, parturition and lactation had no influence on fecal shedding by queens. Methylprednisolone acetate treatment did not induce non-shedders to shed and shedders to increase shedding
Genetic susceptibility to feline infectious peritonitis in Birman cats.
Genetic factors are presumed to influence the incidence of feline infectious peritonitis (FIP), especially among pedigreed cats. However, proof for the existence of such factors has been limited and mainly anecdotal. Therefore, we sought evidence for genetic susceptibility to FIP using feline high density single nucleotide polymorphism (SNP) arrays in a genome-wide association study (GWAS). Birman cats were chosen for GWAS because they are highly inbred and suffer a high incidence of FIP. DNA from 38 Birman cats that died of FIP and 161 healthy cats from breeders in Denmark and USA were selected for genotyping using 63K SNPs distributed across the feline genome. Danish and American Birman cats were closely related and the populations were therefore combined and analyzed in two manners: (1) all cases (FIP) vs. all controls (healthy) regardless of age, and (2) cases 1½ years of age and younger (most susceptible) vs. controls 2 years of age and older (most resistant). GWAS of the second cohort was most productive in identifying significant genome-wide associations between case and control cats. Four peaks of association with FIP susceptibility were identified, with two being identified on both analyses. Five candidate genes ELMO1, RRAGA, TNFSF10, ERAP1 and ERAP2, all relevant to what is known about FIP virus pathogenesis, were identified but no single association was fully concordant with the disease phenotype. Difficulties in doing GWAS in cats and interrogating complex genetic traits were discussed
Cryptographic Randomized Response Techniques
We develop cryptographically secure techniques to guarantee unconditional
privacy for respondents to polls. Our constructions are efficient and
practical, and are shown not to allow cheating respondents to affect the
``tally'' by more than their own vote -- which will be given the exact same
weight as that of other respondents. We demonstrate solutions to this problem
based on both traditional cryptographic techniques and quantum cryptography.Comment: 21 page
A Mesolithic settlement site at Howick, Northumberland: a preliminary report
Excavations at a coastal site at Howick during 2000 and 2002 have revealed evidence for a substantial Mesolithic settlement and a Bronze Age cist cemetery. Twenty one radiocarbon determinations of the earlier eighth millennium BP (Cal.) indicate that the Mesolithic site is one of the earliest known in northern Britain. An 8m core of sediment was recovered from stream deposits adjacent to the archaeological site which provides information on local environmental conditions. Howick offers a unique opportunity to understand aspects of hunter-gatherer colonisation and settlement during a period of rapid palaeogeographical change around the margins of the North Sea basin, at a time when it was being progressively inundated by the final stages of the postglacial marine transgression. The cist cemetery will add to the picture of Bronze Age occupation of the coastal strip and again reveals a correlation between the location of Bronze Age and Mesolithic sites which has been observed elsewhere in the region
Experimental and numerical study of error fields in the CNT stellarator
Sources of error fields were indirectly inferred in a stellarator by
reconciling computed and numerical flux surfaces. Sources considered so far
include the displacements and tilts (but not the deformations, yet) of the four
circular coils featured in the simple CNT stellarator. The flux surfaces were
measured by means of an electron beam and phosphor rod, and were computed by
means of a Biot-Savart field-line tracing code. If the ideal coil locations and
orientations are used in the computation, agreement with measurements is poor.
Discrepancies are ascribed to errors in the positioning and orientation of the
in-vessel interlocked coils. To that end, an iterative numerical method was
developed. A Newton-Raphson algorithm searches for the coils' displacements and
tilts that minimize the discrepancy between the measured and computed flux
surfaces. This method was verified by misplacing and tilting the coils in a
numerical model of CNT, calculating the flux surfaces that they generated, and
testing the algorithm's ability to deduce the coils' displacements and tilts.
Subsequently, the numerical method was applied to the experimental data,
arriving at a set of coil displacements whose resulting field errors exhibited
significantly improved quantitative and qualitative agreement with experimental
results.Comment: Special Issue on the 20th International Stellarator-Heliotron
Worksho
Tur\'an Graphs, Stability Number, and Fibonacci Index
The Fibonacci index of a graph is the number of its stable sets. This
parameter is widely studied and has applications in chemical graph theory. In
this paper, we establish tight upper bounds for the Fibonacci index in terms of
the stability number and the order of general graphs and connected graphs.
Tur\'an graphs frequently appear in extremal graph theory. We show that Tur\'an
graphs and a connected variant of them are also extremal for these particular
problems.Comment: 11 pages, 3 figure
Frequency response in surface-potential driven electro-hydrodynamics
Using a Fourier approach we offer a general solution to calculations of slip
velocity within the circuit description of the electro-hydrodynamics in a
binary electrolyte confined by a plane surface with a modulated surface
potential. We consider the case with a spatially constant intrinsic surface
capacitance where the net flow rate is in general zero while harmonic rolls as
well as time-averaged vortex-like components may exist depending on the spatial
symmetry and extension of the surface potential. In general the system displays
a resonance behavior at a frequency corresponding to the inverse RC time of the
system. Different surface potentials share the common feature that the
resonance frequency is inversely proportional to the characteristic length
scale of the surface potential. For the asymptotic frequency dependence above
resonance we find a 1/omega^2 power law for surface potentials with either an
even or an odd symmetry. Below resonance we also find a power law omega^alpha
with alpha being positive and dependent of the properties of the surface
potential. Comparing a tanh potential and a sech potential we qualitatively
find the same slip velocity, but for the below-resonance frequency response the
two potentials display different power law asymptotics with alpha=1 and
alpha~2, respectively.Comment: 4 pages including 1 figure. Accepted for PR
Canted antiferromagnetism in phase-pure CuMnSb
We report the low-temperature properties of phase-pure single crystals of the
half-Heusler compound CuMnSb grown by means of optical float-zoning. The
magnetization, specific heat, electrical resistivity, and Hall effect of our
single crystals exhibit an antiferromagnetic transition at and a second anomaly at a temperature . Powder and single-crystal neutron diffraction establish an
ordered magnetic moment of ,
consistent with the effective moment inferred from the Curie-Weiss dependence
of the susceptibility. Below , the Mn sublattice displays
commensurate type-II antiferromagnetic order with propagation vectors and
magnetic moments along (magnetic space group ).
Surprisingly, below , the moments tilt away from by
a finite angle , forming a canted antiferromagnetic
structure without uniform magnetization consistent with magnetic space group
. Our results establish that type-II antiferromagnetism is not the
zero-temperature magnetic ground state of CuMnSb as may be expected of the
face-centered cubic Mn sublattice.Comment: 14 pages, 15 figure
- …