29,926 research outputs found

    Review of the environmental and organisational implications of cloud computing: final report.

    Get PDF
    Cloud computing – where elastic computing resources are delivered over the Internet by external service providers – is generating significant interest within HE and FE. In the cloud computing business model, organisations or individuals contract with a cloud computing service provider on a pay-per-use basis to access data centres, application software or web services from any location. This provides an elasticity of provision which the customer can scale up or down to meet demand. This form of utility computing potentially opens up a new paradigm in the provision of IT to support administrative and educational functions within HE and FE. Further, the economies of scale and increasingly energy efficient data centre technologies which underpin cloud services means that cloud solutions may also have a positive impact on carbon footprints. In response to the growing interest in cloud computing within UK HE and FE, JISC commissioned the University of Strathclyde to undertake a Review of the Environmental and Organisational Implications of Cloud Computing in Higher and Further Education [19]

    Pauli-Limited Superconductivity in Small Grains

    Full text link
    We report on an exploration of the mean-field phase diagram for Pauli-limited superconductivity in small metallic grains. Emphasis is placed on the crossover from the ultra-small grain limit where superconductivity disappears to the bulk thin-film limit as the single-particle level spacing in the grain decreases. We find that the maximum Zeeman coupling strength compatible with superconductivity increases with decreasing grain size, in spite of a monotonically decreasing condensation energy per unit volume.Comment: 4 pages of text, 6 figure

    Quantum vortex dynamics in two-dimensional neutral superfluids

    Full text link
    We derive an effective action for the vortex position degree-of-freedom in a superfluid by integrating out condensate phase and density fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and obtain an expression for the vortex mass. We find that this adiabatic approximation is valid only when the superfluid droplet radius RR, or the typical distance between vortices, is very much larger than the coherence length ξ\xi. We go beyond the adiabatic approximation numerically, accounting for the quantum dynamics of environmental modes and capturing their dissipative coupling to condensate dynamics. For the case of an optical-lattice superfluid we demonstrate that vortex motion damping can be adjusted by tuning the ratio between the tunneling energy JJ and the on-site interaction energy UU. We comment on the possibility of realizing vortex Landau level physics.Comment: 14 pages, 10 figures, accepted by PRA with corrected references and typo

    Magnetization orientation dependence of the quasiparticle spectrum and hysteresis in ferromagnetic metal nanoparticles

    Full text link
    We use a microscopic Slater-Koster tight-binding model with short-range exchange and atomic spin-orbit interactions that realistically captures generic features of ferromagnetic metal nanoparticles to address the mesoscopic physics of magnetocrystalline anisotropy and hysteresis in nanoparticle quasiparticle excitation spectra. Our analysis is based on qualitative arguments supported by self-consistent Hartree-Fock calculations for nanoparticles containing up to 260 atoms. Calculations of the total energy as a function of magnetization direction demonstrate that the magnetic anisotropy per atom fluctuates by several percents when the number of electrons in the particle changes by one, even for the largest particles we consider. Contributions of individual orbitals to the magnetic anisotropy are characterized by a broad distribution with a mean more than two orders of magnitude smaller than its variance and with no detectable correlations between anisotropy contribution and quasiparticle energy. We find that the discrete quasiparticle excitation spectrum of a nanoparticle displays a complex non-monotonic dependence on an external magnetic field, with abrupt jumps when the magnetization direction is reversed by the field, explaining recent spectroscopic studies of magnetic nanoparticles. Our results suggests the existence of a broad cross-over from a weak spin-orbit coupling to a strong spin-orbit coupling regime, occurring over the range from approximately 200- to 1000-atom nanoparticles.Comment: 39 pages, 18 figures, to be published in Physical Review

    Thin films of a three-dimensional topological insulator in a strong magnetic field: a microscopic study

    Full text link
    The response of thin films of Bi2_2Se3_3 to a strong perpendicular magnetic field is investigated by performing magnetic bandstructure calculations for a realistic multi-band tight-binding model. Several crucial features of Landau quantization in a realistic three-dimensional topological insulator are revealed. The n=0n=0 Landau level is absent in ultra-thin films, in agreement with experiment. In films with a crossover thickness of five quintuple layers, there is a signature of the n=0n=0 level, whose overall trend as a function of magnetic field matches the established low-energy effective-model result. Importantly, we find a field-dependent splitting and a strong spin-polarization of the n=0n=0 level which can be measured experimentally at reasonable field strengths. Our calculations show mixing between the surface and bulk Landau levels which causes the character of levels to evolve with magnetic field.Comment: 5 pages, 4 figure

    Elementary Excitations of Ferromagnetic Metal Nanoparticles

    Full text link
    We present a theory of the elementary spin excitations in transition metal ferromagnet nanoparticles which achieves a unified and consistent quantum description of both collective and quasiparticle physics. The theory starts by recognizing the essential role played by spin-orbit interactions in determining the energies of ferromagnetic resonances in the collective excitation spectrum and the strength of their coupling to low-energy particle-hole excitations. We argue that a crossover between Landau-damped ferromagnetic resonance and pure-state collective magnetic excitations occurs as the number of atoms in typical transition metal ferromagnet nanoparticles drops below approximately 10410^4, approximately where the single-particle level spacing, δ\delta, becomes larger than, αEres\sqrt{\alpha} E_{\rm res}, where EresE_{\rm res} is the ferromagnetic resonance frequency and α\alpha is the Gilbert damping parameter. We illustrate our ideas by studying the properties of semi-realistic model Hamiltonians, which we solve numerically for nanoparticles containing several hundred atoms. For small nanoparticles, we find one isolated ferromagnetic resonance collective mode below the lowest particle-hole excitation energy, at Eres0.1E_{\rm res} \approx 0.1 meV. The spectral weight of this pure excitation nearly exhausts the transverse dynamical susceptibility spectral weight. As δ\delta approaches αEres\sqrt{\alpha} E_{\rm res}, the ferromagnetic collective excitation is more likely to couple strongly with discrete particle-hole excitations. In this regime the distinction between the two types of excitations blurs. We discuss the significance of this picture for the interpretation of recent single-electron tunneling experiments.Comment: 19 pages, 13 figure

    Nernst and Seebeck effect in a graphene nanoribbon

    Get PDF
    The thermoelectric power, including the Nernst and Seebeck effects, in graphene nanoribbon is studied. By using the non-equilibrium Green function combining with the tight-binding Hamiltonian, the Nernst and Seebeck coefficients are obtained. Due to the electron-hole symmetry, the Nernst coefficient is an even function of the Fermi energy while the Seebeck coefficient is an odd function regardless of the magnetic field. In the presence of a strong magnetic field, the Nernst and Seebeck coefficients are almost independent of the chirality and width of the nanoribbon, and they show peaks when the Fermi energy crosses the Landau levels. The height of nn-th (excluding n=0n=0) peak is [ln2/n][\ln2/|n|] for the Nernst effect and is ln2/n\ln2/n for the Seebeck effect. For the zeroth peak, it is abnormal with height [2ln2][2\ln2] for the Nernst effect and the peak disappears for the Seebeck effect. When the magnetic field is turned off, however, the Nernst effect is absent and only Seebeck effect exists. In this case, the Seebeck coefficient strongly depends on the chirality of the nanoribbon. The peaks are equidistant for the nanoribbons with zigzag edge but are irregularly distributed for the armchair edge. In particular, for the insulating armchair ribbon, the Seebeck coefficient can be very large near the Dirac point. When the magnetic field varies from zero to large values, the differences among the Seebeck coefficients for different chiral ribbons gradually vanish and the nonzero value of Nernst coefficient appears first near the Dirac point then gradually extents to the whole energy region.Comment: 8 pages, 7 figure

    Current-induced torques due to compensated antiferromagnets

    Full text link
    We analyse the influence of current induced torques on the magnetization configuration of a ferromagnet in a circuit containing a compensated antiferromagnet. We argue that these torques are generically non-zero and support this conclusion with a microscopic NEGF calculation for a circuit containing antiferromagnetic NiMn and ferromagnetic Co layers. Because of symmetry dictated differences in the form of the current-induced torque, the phase diagram which expresses the dependence of ferromagnet configuration on current and external magnetic field differs qualitatively from its ferromagnet-only counterpart.Comment: 4 pages, 5 figure

    Chern number spins of Mn acceptor magnets in GaAs

    Full text link
    We determine the effective total spin JJ of local moments formed from acceptor states bound to Mn ions in GaAs by evaluating their magnetic Chern numbers. We find that when individual Mn atoms are close to the sample surface, the total spin changes from J=1J = 1 to J=2J = 2, due to quenching of the acceptor orbital moment. For Mn pairs in bulk, the total JJ depends on the pair orientation in the GaAs lattice and on the separation between the Mn atoms. We point out that Berry curvature variation as a function of local moment orientation can profoundly influence the quantum spin dynamics of these magnetic entities.Comment: 4 pages, 3 figure
    corecore