2,577 research outputs found
Diffusion Enhancement in a Periodic Potential under High-Frequency Space-Dependent Forcing
We study the long-time behavior of underdamped Brownian particle moving
through a viscous medium and in a systematic potential, when it is subjected to
a space-dependent high-frequency periodic force. When the frequency is very
large, much larger than all other relevant system-frequencies, there is a
Kapitsa time-window wherein the effect of frequency dependent forcing can be
replaced by a static effective potential. Our new analysis includes the case
when the forcing, in addition to being frequency-dependent, is space-dependent
as well. The results of the Kapitsa analysis then lead to additional
contributions to the effective potential. These are applied to the numerical
calculation of the diffusion coefficient (D) for a Brownian particle moving in
a periodic potential. Presented are numerical results, which are in excellent
agreement with theoretical predictions and which indicate a significant
enhancement of D due to the space-dependent forcing terms. In addition we study
the transport property (current) of underdamped Brownian particles in a ratchet
potential.Comment: RevTex 6 pages, 5 figure
High-fidelity quantum logic gates using trapped-ion hyperfine qubits
We demonstrate laser-driven two-qubit and single-qubit logic gates with
fidelities 99.9(1)% and 99.9934(3)% respectively, significantly above the
approximately 99% minimum threshold level required for fault-tolerant quantum
computation, using qubits stored in hyperfine ground states of calcium-43 ions
held in a room-temperature trap. We study the speed/fidelity trade-off for the
two-qubit gate, for gate times between 3.8s and 520s, and develop a
theoretical error model which is consistent with the data and which allows us
to identify the principal technical sources of infidelity.Comment: 1 trap, 2 ions, 3 nines. Detailed write-up of arXiv:1406.5473
including single-qubit gate data als
Enhanced Zeeman splitting in Ga0.25In0.75As quantum point contacts
The strength of the Zeeman splitting induced by an applied magnetic field is
an important factor for the realization of spin-resolved transport in
mesoscopic devices. We measure the Zeeman splitting for a quantum point contact
etched into a Ga0.25In0.75As quantum well, with the field oriented parallel to
the transport direction. We observe an enhancement of the Lande g-factor from
|g*|=3.8 +/- 0.2 for the third subband to |g*|=5.8 +/- 0.6 for the first
subband, six times larger than in GaAs. We report subband spacings in excess of
10 meV, which facilitates quantum transport at higher temperatures.Comment: [Version 2] Revtex4, 11 pages, 3 figures, accepted for publication in
Applied Physics Letter
Symmetry of two terminal, non-linear electric conduction
The well-established symmetry relations for linear transport phenomena can
not, in general, be applied in the non-linear regime. Here we propose a set of
symmetry relations with respect to bias voltage and magnetic field for the
non-linear conductance of two-terminal electric conductors. We experimentally
confirm these relations using phase-coherent, semiconductor quantum dots.Comment: 4 pages, 4 figure
Signatures of Wigner Localization in Epitaxially Grown Nanowires
It was predicted by Wigner in 1934 that the electron gas will undergo a
transition to a crystallized state when its density is very low. Whereas
significant progress has been made towards the detection of electronic Wigner
states, their clear and direct experimental verification still remains a
challenge. Here we address signatures of Wigner molecule formation in the
transport properties of InSb nanowire quantum dot systems, where a few
electrons may form localized states depending on the size of the dot (i.e. the
electron density). By a configuration interaction approach combined with an
appropriate transport formalism, we are able to predict the transport
properties of these systems, in excellent agreement with experimental data. We
identify specific signatures of Wigner state formation, such as the strong
suppression of the antiferromagnetic coupling, and are able to detect the onset
of Wigner localization, both experimentally and theoretically, by studying
different dot sizes.Comment: 4 pages, 4 figure
High-fidelity preparation, gates, memory and readout of a trapped-ion quantum bit
We implement all single-qubit operations with fidelities significantly above
the minimum threshold required for fault-tolerant quantum computing, using a
trapped-ion qubit stored in hyperfine "atomic clock" states of Ca.
We measure a combined qubit state preparation and single-shot readout fidelity
of 99.93%, a memory coherence time of seconds, and an average
single-qubit gate fidelity of 99.9999%. These results are achieved in a
room-temperature microfabricated surface trap, without the use of magnetic
field shielding or dynamic decoupling techniques to overcome technical noise.Comment: Supplementary Information included. 6 nines, 7 figures, 8 page
Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap
We propose a surface ion trap design incorporating microwave control
electrodes for near-field single-qubit control. The electrodes are arranged so
as to provide arbitrary frequency, amplitude and polarization control of the
microwave field in one trap zone, while a similar set of electrodes is used to
null the residual microwave field in a neighbouring zone. The geometry is
chosen to reduce the residual field to the 0.5% level without nulling fields;
with nulling, the crosstalk may be kept close to the 0.01% level for realistic
microwave amplitude and phase drift. Using standard photolithography and
electroplating techniques, we have fabricated a proof-of-principle electrode
array with two trapping zones. We discuss requirements for the microwave drive
system and prospects for scalability to a large two-dimensional trap array.Comment: 8 pages, 6 figure
- …