18 research outputs found

    Reversing a granular flow on a vibratory conveyor

    Full text link
    Experimental results are presented on the transport properties of granular materials on a vibratory conveyor. For circular oscillations of the shaking trough a non-monotonous dependence of the transport velocity on the normalized acceleration is observed. Two maxima are separated by a regime, where the granular flow is much slower and, in a certain driving range, even reverses its direction. A similar behavior is found for a single solid body with a low coefficient of restitution, whereas an individual glass bead of 1 mm diameter is propagated in the same direction for all accelerations.Comment: 4 pages, 5 figures, submitted to Applied Physics Letter

    Particle dynamics of a cartoon dune

    Get PDF
    The spatio-temporal evolution of a downsized model for a desert dune is observed experimentally in a narrow water flow channel. A particle tracking method reveals that the migration speed of the model dune is one order of magnitude smaller than that of individual grains. In particular, the erosion rate consists of comparable contributions from creeping (low energy) and saltating (high energy) particles. The saltation flow rate is slightly larger, whereas the number of saltating particles is one order of magnitude lower than that of the creeping ones. The velocity field of the saltating particles is comparable to the velocity field of the driving fluid. It can be observed that the spatial profile of the shear stress reaches its maximum value upstream of the crest, while its minimum lies at the downstream foot of the dune. The particle tracking method reveals that the deposition of entrained particles occurs primarily in the region between these two extrema of the shear stress. Moreover, it is demonstrated that the initial triangular heap evolves to a steady state with constant mass, shape, velocity, and packing fraction after one turnover time has elapsed. Within that time the mean distance between particles initially in contact reaches a value of approximately one quarter of the dune basis length

    Pattern formation in a rotating aqueous suspension

    No full text
    A novel pattern-forming instability in a mixture of a granular material and water in a horizontal rotating drum is experimentally investigated. The particles accumulate in radial symmetric rings separated by pure water. The transition between the homogeneous state and the structured state is hysteretic. The transition point is extrapolated from the growth rates of the chain of rings. The trajectory of a single particle is discussed to estimate an upper boundary for the transition point

    Oscillatory patterns in a rotating aqueous suspension

    No full text
    Suspensions of granular material in glycerin-water mixtures agitated in horizontally aligned rotating tubes show a whole variety of patterns. The stationary pattern of a homogeneous distribution and a chain of rings have been investigated before. Here we report on two types of oscillatory states in the same system. For a certain range of the rotation frequency and sufficiently high viscosity traveling waves propagate with constant velocity back and forth along the tube in an almost homogeneous distribution of sedimenting particles. The transition from a stationary to the traveling-wave state is found to be an imperfect supercritical bifurcation. The dependence of the wave length and speed on the tube’s rotation frequency and the dynamic viscosity of the fluid are determined. Experiments with low viscosities show no traveling waves but low-frequency oscillations, when the previously known chain of rings undergoes a secondary instability

    Ripple formation in weakly turbulent flow

    No full text
    The formation of granular ripples under liquid shear flow in an annular channel is studied experimentally. The erodible granular bed is subject to weakly turbulent flows without a defined sharp boundary layer close to the granular bed. The flow field and the degree of turbulence is characterized quantitatively by using a particle image velocimeter and a laser-Doppler velocimeter, respectively. A new range of particle Reynolds numbers at the lower limit of the Shields diagram were explored. Quantitative measurements of the granular flow on the surface reveal that the threshold for particle motion coincides within the order of one percent with the threshold for ripple formation. In fully developed ripples it was found that on the leeward side of the ripples regions of low-velocity gradients exist where granular motion is scarce, indicating that the coupling between the ripples is mainly caused by the flow field of the liquid

    Oscillatory patterns in a rotating aqueous suspension

    No full text

    A horizontal Brazil-nut effect and its reverse

    Get PDF
    Transport effects in a monolayer consisting of a binary granular mixture, confined in a horizontally vibrating circular dish, are studied experimentally and compared with a reduced theoretical model. Depending on the ratio of the particles' material density and size, migration of the larger particles occurs either towards the boundary or to the center of the circular container. These directed motions show similarities to the Brazil-nut effect and its reverse form
    corecore