5,694 research outputs found
Formation and Equilibrium Properties of Living Polymer Brushes
Polydisperse brushes obtained by reversible radical chain polymerization
reaction onto a solid substrate with surface-attached initiators, are studied
by means of an off-lattice Monte Carlo algorithm of living polymers (LP).
Various properties of such brushes, like the average chain length and the
conformational orientation of the polymers, or the force exerted by the brush
on the opposite container wall, reveal power-law dependence on the relevant
parameters. The observed molecular weight distribution (MWD) of the grafted LP
decays much more slowly than the corresponding LP bulk system due to the
gradient of the monomer density within the dense pseudo-brush which favors
longer chains. Both MWD and the density profiles of grafted polymers and chain
ends are well fitted by effective power laws whereby the different exponents
turn out to be mutually self-consistent for a pseudo-brush in the
strong-stretching regime.Comment: 33 pages, 11 figues, J.Chem. Phys. accepted Oct. 199
Dynamical Monte Carlo Study of Equilibrium Polymers : Static Properties
We report results of extensive Dynamical Monte Carlo investigations on
self-assembled Equilibrium Polymers (EP) without loops in good solvent. (This
is thought to provide a good model of giant surfactant micelles.) Using a novel
algorithm we are able to describe efficiently both static and dynamic
properties of systems in which the mean chain length \Lav is effectively
comparable to that of laboratory experiments (up to 5000 monomers, even at high
polymer densities). We sample up to scission energies of over
nearly three orders of magnitude in monomer density , and present a
detailed crossover study ranging from swollen EP chains in the dilute regime up
to dense molten systems. Confirming recent theoretical predictions, the
mean-chain length is found to scale as \Lav \propto \phi^\alpha \exp(\delta
E) where the exponents approach
and in the
dilute and semidilute limits respectively. The chain length distribution is
qualitatively well described in the dilute limit by the Schulz-Zimm
distribution \cN(s)\approx s^{\gamma-1} \exp(-s) where the scaling variable
is s=\gamma L/\Lav. The very large size of these simulations allows also an
accurate determination of the self-avoiding walk susceptibility exponent
. ....... Finite-size effects are discussed in
detail.Comment: 15 pages, 14 figures, LATE
Enhancing the work of the Islington Integrated Gangs Team: A pilot study on the response to serious youth violence in Islington
This report is the result of research conducted by the Centre for City Criminology at City, University of London, in partnership with Islington’s Integrated Gangs Team (IGT) and the Metropolitan Police Service (MPS). The research was co-funded by MPS and the School of Arts and Social Sciences, City, University of London. Following a collaborative research event in October 2017, City Criminologists were commissioned to carry out a small-scale research project to capture the work of the IGT and to make recommendations regarding its operations, coherence, effectiveness and sustainability. The research team conducted semi-structured interviews over several months with 23 practitioners across the services that constitute the IGT. This report presents the findings and recommendations
Correlated electron transport in molecular electronics
Theoretical and experimental values to date for the resistances of single molecules commonly disagree by orders of magnitude. By reformulating the transport problem using boundary conditions suitable for correlated many-electron systems, we approach electron transport across molecules from a new standpoint. Application of our correlated formalism to benzene-dithiol gives current-voltage characteristics close to experimental observations. The method can solve the open system quantum many-body problem accurately, treats spin exactly, and is valid beyond the linear response regime
C-60 as a Faraday cage
Endohedral fullerenes have been proposed for a number of technological uses, for example, as a nanoscale switch, memory bit and as qubits for quantum computation. For these technology applications, it is important to know the ease with which the endohedral atom can be manipulated using an applied electric field. We find that the Buckminsterfullerene (C-60) acts effectively as a small Faraday cage, with only 25% of the field penetrating the interior of the molecule. Thus influencing the atom is difficult, but as a qubit the endohedral atom should be well shielded from environmental electrical noise. We also predict how the field penetration should increase with the fullerene radius. (C) 2004 American Institute of Physics. (DOI: 10.1063/1.1640783
Strain rate effects in the mechanical response of polymer anchored carbon nanotube foams
Super-compressible foam-like carbon nanotube films have been reported to
exhibit highly nonlinear viscoelastic behaviour in compression similar to soft
tissue. Their unique combination of light weight and exceptional electrical,
thermal and mechanical properties have helped identify them as viable building
blocks for more complex nanosystems and as stand-alone structures for a variety
of different applications. In the as-grown state, their mechanical performance
is limited by the weak adhesion between the tubes, controlled by the van der
Waals forces, and the substrate allowing the forests to split easily and to
have low resistance in shear. Under axial compression loading carbon nanotubes
have demonstrated bending, buckling8 and fracture9 (or a combination of the
above) depending on the loading conditions and on the number of loading cycles.
In this work, we partially anchor dense vertically aligned foam-like forests of
carbon nanotubes on a thin, flexible polymer layer to provide structural
stability, and report the mechanical response of such systems as a function of
the strain rate. We test the sample under quasi-static indentation loading and
under impact loading and report a variable nonlinear response and different
elastic recovery with varying strain rates. A Bauschinger-like effect is
observed at very low strain rates while buckling and the formation of permanent
defects in the tube structure is reported at very high strain rates. Using
high-resolution transmission microscopyComment: 19 Pages, 4 Figure
Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars
Our current understanding of size-dependent strength in nano- and microscale crystals is centered around the idea that the overall strength is determined by the stress required to propagate dislocation sources. The nature and type of these dislocation sources is the subject of extensive debate, however, one commonality amongst these theories is that the ability of the free surface to absorb dislocations is a necessary condition for transition to a source controlled regime. In this work we demonstrate that atomic layer deposition (ALD) of conformal 5–25 nm thick TiO_2/Al_(2)O_3 coatings onto electroplated single crystalline copper pillars with diameters ranging from 75 nm to 1 μm generally inhibits the ability of a dislocation to vanish at the free surface. Uniaxial compression tests reveal increased strength and hardening relative to uncoated pillars at equivalent diameters, as well as a notable recovery of plastic strain during unloading, i.e. the Bauschinger effect. Unlike previous reports, these coated pillars retained the stochastic signature in their stress–strain curves. We explain these observations within the framework of a size-dependent strength theory based on a single arm source model, dislocation theory, and microstructural analysis by transmission electron microscopy
- …