18,092 research outputs found
Exploring transmission Kikuchi diffraction using a Timepix detector
Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods
Improved V II log() Values, Hyperfine Structure Constants, and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937
New experimental absolute atomic transition probabilities are reported for
203 lines of V II. Branching fractions are measured from spectra recorded using
a Fourier transform spectrometer and an echelle spectrometer. The branching
fractions are normalized with radiative lifetime measurements to determine the
new transition probabilities. Generally good agreement is found between this
work and previously reported V II transition probabilities. Use of two
spectrometers, independent radiometric calibration methods, and independent
data analysis routines enables a reduction in systematic uncertainties, in
particular those due to optical depth errors. In addition, new hyperfine
structure constants are measured for selected levels by least squares fitting
line profiles in the FTS spectra. The new V II data are applied to high
resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to
determine new, more accurate V abundances. Lines covering a range of wavelength
and excitation potential are used to search for non-LTE effects. Very good
agreement is found between our new solar photospheric V abundance, log
{\epsilon}(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value.
In HD 84937, we derive [V/H] = -2.08 from 68 lines, leading to a value of
[V/Fe] = 0.24.Comment: 32 pages, 7 tables (3 machine-readable), 8 figures; accepted for
publication in ApJ
Theoretical study of resonant x-ray emission spectroscopy of Mn films on Ag
We report a theoretical study on resonant x-ray emission spectra (RXES) in
the whole energy region of the Mn white lines for three prototypical
Mn/Ag(001) systems: (i) a Mn impurity in Ag, (ii) an adsorbed Mn monolayer on
Ag, and (iii) a thick Mn film. The calculated RXES spectra depend strongly on
the excitation energy. At excitation, the spectra of all three systems
are dominated by the elastic peak. For excitation energies around , and
between and , however, most of the spectral weight comes from
inelastic x-ray scattering. The line shape of these inelastic ``satellite''
structures changes considerably between the three considered Mn/Ag systems, a
fact that may be attributed to changes in the bonding nature of the Mn-
orbitals. The system-dependence of the RXES spectrum is thus found to be much
stronger than that of the corresponding absorption spectrum. Our results
suggest that RXES in the Mn region may be used as a sensitive probe
of the local environment of Mn atoms.Comment: 9 pages, 11 figure
- …