34,095 research outputs found
Low Temperature Superfluid Response of High-Tc Superconductors
We have reviewed our theoretical and experimental results of the low
temperature superfluid response function of high temperature superconductors
(HTSC). In clean high-Tc materials the in-plane superfluid density rho_s^{ab}
varies linearly with temperature. The slope of this linear T term is found to
scale approximately with 1/Tc which, according to the weak coupling BCS theory
for a d-wave superconductor, implies that the gap amplitude scales
approximately with Tc. A T^5 behavior of the out-of-plane superfluid density
rho_s^c for clean tetragonal HTSC was predicted and observed experimentally in
the single layer Hg-compound HgBa_2CuO_{4+delta}. In other tetragonal high-Tc
compounds with relatively high anisotropy, such as Hg_2Ba_2Ca_2Cu_3O_{8+delta},
rho_s^c varies as T^2 due to disorder effects. In optimally doped
YBa_2Cu_3O_{7-delta}, rho_s^c varies linearly with temperature at low
temperatures, but in underdoped YBa_2Cu_3O_{7-delta}, rho_s^c varies as T^2 at
low temperatures; these results are consistent with our theoretical
calculations.Comment: 26 pages, 8 figure
Evolution of a disc-planet system with a binary companion on an inclined orbit
We study orbital inclination changes associated with the precession of a
disc-planet system that occurs through gravitational interaction with a binary
companion on an inclined orbit. We investigate whether this scenario can
account for giant planets on close orbits highly inclined to the stellar
equatorial plane. We obtain conditions for maintaining approximate coplanarity
and test them with SPH-simulations. For parameters of interest, the system
undergoes approximate rigid body precession with modest warping while the
planets migrate inwards. Because of pressure forces, disc self-gravity is not
needed to maintain the configuration. We consider a disc and single planet for
different initial inclinations of the binary orbit to the midplane of the
combined system and a system of three planets for which migration leads to
dynamical instability that reorders the planets. As the interaction is
dominated by the time averaged quadrupole component of the binary's perturbing
potential, results for a circular orbit can be scaled to apply to eccentric
orbits. The system responded adiabatically when changes to binary orbital
parameters occurred on time scales exceeding the orbital period. Accordingly
inclination changes are maintained under its slow removal. Thus the scenario
for generating high inclination planetary orbits studied here, is promising.Comment: 16 pages, 13 figures, accepted for publication by MNRA
Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials
We study the superfluid-Mott-insulator transition of ultracold bosonic atoms
in a one-dimensional optical lattice with a double-well confining trap using
the density-matrix renormalization group. At low density, the system behaves
similarly as two separated ones inside harmonic traps. At high density,
however, interesting features appear as the consequence of the quantum
tunneling between the two wells and the competition between the "superfluid"
and Mott regions. They are characterized by a rich step-plateau structure in
the visibility and the satellite peaks in the momentum distribution function as
a function of the on-site repulsion. These novel properties shed light on the
understanding of the phase coherence between two coupled condensates and the
off-diagonal correlations between the two wells.Comment: 5 pages, 7 figure
Knowledge-Aided STAP Using Low Rank and Geometry Properties
This paper presents knowledge-aided space-time adaptive processing (KA-STAP)
algorithms that exploit the low-rank dominant clutter and the array geometry
properties (LRGP) for airborne radar applications. The core idea is to exploit
the fact that the clutter subspace is only determined by the space-time
steering vectors,
{red}{where the Gram-Schmidt orthogonalization approach is employed to
compute the clutter subspace. Specifically, for a side-looking uniformly spaced
linear array, the} algorithm firstly selects a group of linearly independent
space-time steering vectors using LRGP that can represent the clutter subspace.
By performing the Gram-Schmidt orthogonalization procedure, the orthogonal
bases of the clutter subspace are obtained, followed by two approaches to
compute the STAP filter weights. To overcome the performance degradation caused
by the non-ideal effects, a KA-STAP algorithm that combines the covariance
matrix taper (CMT) is proposed. For practical applications, a reduced-dimension
version of the proposed KA-STAP algorithm is also developed. The simulation
results illustrate the effectiveness of our proposed algorithms, and show that
the proposed algorithms converge rapidly and provide a SINR improvement over
existing methods when using a very small number of snapshots.Comment: 16 figures, 12 pages. IEEE Transactions on Aerospace and Electronic
Systems, 201
Accurate determination of tensor network state of quantum lattice models in two dimensions
We have proposed a novel numerical method to calculate accurately the
physical quantities of the ground state with the tensor-network wave function
in two dimensions. We determine the tensor network wavefunction by a projection
approach which applies iteratively the Trotter-Suzuki decomposition of the
projection operator and the singular value decomposition of matrix. The norm of
the wavefunction and the expectation value of a physical observable are
evaluated by a coarse grain renormalization group approach. Our method allows a
tensor-network wavefunction with a high bond degree of freedom (such as D=8) to
be handled accurately and efficiently in the thermodynamic limit. For the
Heisenberg model on a honeycomb lattice, our results for the ground state
energy and the staggered magnetization agree well with those obtained by the
quantum Monte Carlo and other approaches.Comment: 4 pages 5 figures 2 table
Spectral properties of a thresholdless dressed-atom laser
We investigate spectral properties of the atomic fluorescence and the output
field of the cavity-mode of a single-atom dressed-state laser in a photonic
crystal. We pay a particular attention to the behavior of the spectra in the
presence of the frequency dependent reservoir and search for signatures of the
thresholdless lasing. Although the thresholdless behavior has been predicted by
analyzing the photon statistics of the cavity field, we find that the threshold
behavior still exists in the spectrum of the cavity field. We find that the
structure of cavity field spectrum depends strongly on the strange of the
pumping rate. For low pumping rates, the spectrum is not monochromatic, it is
composed of a set of discrete lines reveling the discrete (quantum) structure
of the combined dressed-atom plus the cavity field system. We find that for a
certain value of the pumping rate, the multi-peak structure converts into a
single very narrow line centered at the cavity field frequency. A physical
explanation of the behavior of the spectra is provided in terms of dressed
states of the system.Comment: Special Issue of Journal Modern Optics - Fetschrift in honour of
Lorenzo Narducc
Fault tolerant quantum key distribution protocol with collective random unitary noise
We propose an easy implementable prepare-and-measure protocol for robust
quantum key distribution with photon polarization. The protocol is fault
tolerant against collective random unitary channel noise. The protocol does not
need any collective quantum measurement or quantum memory. A security proof and
a specific linear optical realization using spontaneous parametric down
conversion are given.Comment: Accepted by PRA as a Rapid Communicatio
Assessing Evapotranspiration Estimates from the Global Soil Wetness Project Phase 2 (GSWP-2) Simulations
Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).We assess the simulations of global-scale evapotranspiration from the Global Soil Wetness Project Phase 2 (GSWP-2) within a global water-budget framework. The scatter in the GSWP-2 global evapotranspiration estimates from various land surface models can constrain the global, annual water budget fluxes to within ±2.5%, and by using estimates of global precipitation, the residual ocean evaporation estimate falls within the range of other independently derived bulk estimates. However, the GSWP-2 scatter cannot entirely explain the imbalance of the annual fluxes from a modern-era, observationally-based global water budget assessment, and inconsistencies in the magnitude and timing of seasonal variations between the global water budget terms are found. Inter-model inconsistencies in evapotranspiration are largest for high latitude inter-annual variability as well as for inter-seasonal variations in the tropics, and analyses with field-scale data also highlights model disparity at estimating evapotranspiration in high latitude regions. Analyses of the sensitivity simulations that replace uncertain forcings (i.e. radiation, precipitation, and meteorological variables) indicate that global (land) evapotranspiration is slightly more sensitive to precipitation than net radiation perturbations, and the majority of the GSWP-2 models, at a global scale, fall in a marginally moisture-limited evaporative condition. Finally, the range of global evapotranspiration estimates among the models is larger than any bias caused by uncertainties in the GSWP-2 atmospheric forcing, indicating that model structure plays a more important role toward improving global land evaporation estimates (as opposed to improved atmospheric forcing).NASA Energy and Water-cycle Study (NEWS,
grant #NNX06AC30A), under the NEWS Science and Integration Team activities
- …
