41 research outputs found
Bioethanol from poplar clone Imola: an environmentally viable alternative to fossil fuel?
BACKGROUND: Environmental issues, e.g. climate change, fossil resource depletion have triggered ambitious national/regional policies to develop biofuel and bioenergy roles within the overall energy portfolio to achieve decarbonising the global economy and increase energy security. With the 10 % binding target for the transport sector, the Renewable Energy Directive confirms the EU’s commitment to renewable transport fuels especially advanced biofuels. Imola is an elite poplar clone crossed from Populus deltoides Bartr. and Populus nigra L. by Research Units for Intensive Wood Production, Agriculture Research Council in Italy. This study examines its suitability for plantation cultivation under short or very short rotation coppice regimes as a potential lignocellulosic feedstock for the production of ethanol as a transport biofuel. A life cycle assessment (LCA) approach was used to model the cradle-to-gate environmental profile of Imola-derived biofuel benchmarked against conventional fossil gasoline. Specific attention was given to analysing the agroecosystem fluxes of carbon and nitrogen occurring in the cultivation of the Imola biomass in the biofuel life cycle using a process-oriented biogeochemistry model (DeNitrification-DeComposition) specifically modified for application to 2G perennial bioenergy crops and carbon and nitrogen cycling. RESULTS: Our results demonstrate that carbon and nitrogen cycling in perennial crop–soil ecosystems such as this example can be expected to have significant effects on the overall environmental profiles of 2G biofuels. In particular, soil carbon accumulation in perennial biomass plantations is likely to be a significant component in the overall greenhouse gas balance of future biofuel and other biorefinery products and warrants ongoing research and data collection for LCA models. We conclude that bioethanol produced from Imola represents a promising alternative transport fuel offering some savings ranging from 35 to 100 % over petrol in global warming potential, ozone depletion and photochemical oxidation impact categories. CONCLUSIONS: Via comparative analyses for Imola-derived bioethanol across potential supply chains, we highlight priority issues for potential improvement in 2G biofuel profiling. Advanced clones of poplar such as Imola for 2G biofuel production in Italy as modelled here show potential to deliver an environmentally sustainable lignocellulosic biorefinery industry and accelerate advanced biofuel penetration in the transport sector. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-015-0318-8) contains supplementary material, which is available to authorized users
Life Cycle Assessment (LCA): New poplar clones allow an environmentally sustainable cultivation
In Italy 72 poplar clones ( Populus spp.) are registered for commercialization. They were selected for fast growth, stem shape and disease resistance. The new selections (named MSA) includes genotypes with very high resistance to all the main diseases and to one insect, Phloeomizus passerinii (Sign.). Fast growth and disease resistance allow to produce wood with low environmental and economic costs; for this reason in some Italian Regions the introduction of a percentage of these clones in poplar stand is mandatory to obtain funding for their establishment (Rural Development Plan). To better understand the environmental advantages deriving from the use of these clones, in comparison with the old genotypes (particularly ‘I-214’), a ‘Life Cycle Assessment’ approach was applied considering as impact indicator the CO 2 equivalent emissions; from stoolbed to commercial stand, primary data were collected from an Italian experience. Firstly with the Inventory Analysis all the raw material, energy, wastes and emissions related were collected for each cultivation phase. The Analysis showed a reduction of 9% of CO 2 eq. ha -1 emitted, growing MSA instead of ‘I-214’. Considering the emissions per volume of wood, ‘I-214’ requests 47.5 kg CO 2 eq. per m 3 , compared with MSA that request 36.6 kg CO 2 eq. per m 3
Biomass production and energy balance of herbaceous and woody crops on marginal soils in the Po Valley
A wealth of data and information on the cultivation of perennial biomass crops has been collected, but direct comparisons between herbaceous and woody crops are rare. The main objective of this research was to compare the biomass yield, the energy balance and the biomass quality of six perennial bioenergy crops: Populus spp., Robinia pseudoacacia, Salix spp., Arundo donax, Miscanthus
7 giganteus, and Panicum virgatum, grown in two marginal environments. For giant reed and switchgrass, two levels of nitrogen fertilization were applied annually (0-100 kg ha-1). Nitrogen fertilization did not affect biomass or energy production of giant reed; thus, it significantly reduced the energy return on investment (EROI) (from 73 to 27). In switchgrass, nitrogen fertilization significantly increased biomass production and the capacity of this crop to respond to water availability, making it a favorable option when only biomass production is a target. Net energy gain (NEG) was higher for herbaceous crops than for woody crops. In Casale, EROI calculated for poplar and willow (7, on average) was significantly lower than that of the other crops (14, on average). In Gariga, the highest EROI was calculated for miscanthus (98), followed by nonfertilized giant reed and switchgrass (82 and 73, respectively). Growing degree days10 during the cropping season had no effect on biomass production in any of the studied species, although water availability from May to August was a major factor affecting biomass yield in herbaceous crops. Overall, herbaceous crops had the highest ranking for bioenergy production due to their high biomass yield, high net energy gain (NEG), and biomass quality that renders them suitable to both biochemical and thermochemical conversion. Miscanthus in particular had the highest EROI in both locations (16 and 98, in Casale and Gariga), while giant reed had the highest NEG on the silty-loam soil of Gariga
GM1 Ganglioside Promotes Osteogenic Differentiation of Human Tendon Stem Cells
Gangliosides, the sialic acid-conjugated glycosphingolipids present in the lipid rafts, have been recognized as important regulators of cell proliferation, migration, and apoptosis. Due to their peculiar localization in the cell membrane, they modulate the activity of several key cell receptors, and increasing evidence supports their involvement also in stem cell differentiation. In this context, herein we report the role played by the ganglioside GM1 in the osteogenic differentiation of human tendon stem cells ( hTSCs). In particular, we found an increase of GM1 levels during osteogenesis that is instrumental for driving the process. In fact, supplementation of the ganglioside in the medium significantly increased the osteogenic differentiation capability of hTSCs. Mechanistically, we found that GM1 supplementation caused a reduction in the phosphorylation of the platelet-derived growth factor receptor-ss ( PDGFR-ss), which is a known inhibitor of osteogenic commitment. These results were further corroborated by the observation that GM1 supplementation was able to revert the inhibitory effects on osteogenesis when the process was inhibited with exogenous PDGF
Biomass production in mixed plantation with SRC and noble hardwoods
A new model of cultivation that combines reforestation with noble hardwood species (Maple, Cherry,
Service and Wild Service Trees, etc) and Short Rotation Coppices (SRC) with poplar, willow and black locust was
studied in Italy. This paper refers the results obtained during the first 2-4 years of growth. If correctly grown, the
clones of poplar and willow selected for biomass can assure good productions up to 8-9 Odt\ub7ha-1\ub7year-1. The poplar
and willow clones had shown a different behavior depending on the pedological and climatic characteristics of the
sites, therefore it will be necessary to carefully choose the clones to insert in the stand. On a Piedmont sites,
characterized by marginal soil for the agriculture, also the Black Locust has given good results of growth and
production: 4 Odt\ub7ha-1\ub7year-1. The interaction among the intercalary SRC and the noble hardwood plants still have not
been put in evidence from the statistical analysis