30,212 research outputs found

    Prospects for Discovering Supersymmetry at the LHC

    Full text link
    Supersymmetry is one of the best-motivated candidates for physics beyond the Standard Model that might be discovered at the LHC. There are many reasons to expect that it may appear at the TeV scale, in particular because it provides a natural cold dark matter candidate. The apparent discrepancy between the experimental measurement of g_mu - 2 and the Standard model value calculated using low-energy e+ e- data favours relatively light sparticles accessible to the LHC. A global likelihood analysis including this, other electroweak precision observables and B-decay observables suggests that the LHC might be able to discover supersymmetry with 1/fb or less of integrated luminosity. The LHC should be able to discover supersymmetry via the classic missing-energy signature, or in alternative phenomenological scenarios. The prospects for discovering supersymmetry at the LHC look very good.Comment: 8 pages, 11 figure

    Note on Signature Change and Colombeau Theory

    Get PDF
    Recent work alludes to various `controversies' associated with signature change in general relativity. As we have argued previously, these are in fact disagreements about the (often unstated) assumptions underlying various possible approaches. The choice between approaches remains open.Comment: REVTex, 3 pages; to appear in GR

    Electroweak Precision Data and Gravitino Dark Matter

    Get PDF
    Electroweak precision measurements can provide indirect information about the possible scale of supersymmetry already at the present level of accuracy. We review present day sensitivities of precision data in mSUGRA-type models with the gravitino as the lightest supersymmetric particle (LSP). The chi^2 fit is based on M_W, sin^2 theta_eff, (g-2)_mu, BR(b -> s gamma) and the lightest MSSM Higgs boson mass, M_h. We find indications for relatively light soft supersymmetry-breaking masses, offering good prospects for the LHC and the ILC, and in some cases also for the Tevatron.Comment: 4 pages, 1 figure. Talk given at the LCWS06 March 2006, Bangalore, India. References adde

    Gravity and Signature Change

    Get PDF
    The use of proper ``time'' to describe classical ``spacetimes'' which contain both Euclidean and Lorentzian regions permits the introduction of smooth (generalized) orthonormal frames. This remarkable fact permits one to describe both a variational treatment of Einstein's equations and distribution theory using straightforward generalizations of the standard treatments for constant signature.Comment: Plain TeX, 6 pages; to appear in GR

    Full one-loop amplitudes from tree amplitudes

    Get PDF
    We establish an efficient polynomial-complexity algorithm for one-loop calculations, based on generalized DD-dimensional unitarity. It allows automated computations of both cut-constructible {\it and} rational parts of one-loop scattering amplitudes from on-shell tree amplitudes. We illustrate the method by (re)-computing all four-, five- and six-gluon scattering amplitudes in QCD at one-loop.Comment: 27 pages, revte

    Cell-free prediction of protein expression costs for growing cells

    Get PDF
    Translating heterologous proteins places significant burden on host cells, consuming expression resources leading to slower cell growth and productivity. Yet predicting the cost of protein production for any given gene is a major challenge, as multiple processes and factors combine to determine translation efficiency. To enable prediction of the cost of gene expression in bacteria, we describe here a standard cell-free lysate assay that provides a relative measure of resource consumption when a protein coding sequence is expressed. These lysate measurements can then be used with a computational model of translation to predict the in vivo burden placed on growing E. coli cells for a variety of proteins of different functions and lengths. Using this approach, we can predict the burden of expressing multigene operons of different designs and differentiate between the fraction of burden related to gene expression compared to action of a metabolic pathway

    Local freedom in the gravitational field

    Full text link
    In a cosmological context, the electric and magnetic parts of the Weyl tensor, E_{ab} and H_{ab}, represent the locally free curvature - i.e. they are not pointwise determined by the matter fields. By performing a complete covariant decomposition of the derivatives of E_{ab} and H_{ab}, we show that the parts of the derivative of the curvature which are locally free (i.e. not pointwise determined by the matter via the Bianchi identities) are exactly the symmetrised trace-free spatial derivatives of E_{ab} and H_{ab} together with their spatial curls. These parts of the derivatives are shown to be crucial for the existence of gravitational waves.Comment: New results on gravitational waves included; new references added; revised version (IOP style) to appear Class. Quantum Gra

    The Venus Balloon Project

    Get PDF
    On June 11 and 15, 1985, two instrumental balloons were released from the Soviet VEGA 1 and VEGA 2 spacecraft and deployed in the atmosphere of Venus. The VEGA probes flew by the planet on their way to a rendezvous with comet Halley in March 1986. Drifting with the wind at altitudes of 54 km, the balloons traveled one-third of the way around the planet during their 46-hour lifetimes. Sensors on-board the gondolas made periodic measurements of pressure, temperature, vertical wind velocity, cloud particle density, ambient light level, and frequency of lightning. The data were transmitted to Earth and received at the Deep Space Network (DSN) 64-m stations and at several large antennas in the USSR. Approximately 95 percent of the telemetry data were successfully decoded at the DSN complexes and in the Soviet Union, and were provided to the international science team for analysis. Very Long Baseline Interferometry (VLBI) data were acquired by 20 radio observatories around the world for the purpose of monitoring the Venus winds. The DSN 64-m subnet was part of a 15-station VLBI network organized by the Centre National d'Etudes Spatiales (CNES) of France. In addition, five antennas of the Soviet network participated. VLBI data from the CNES network are currently being processed at the Jet Propulsion Laboratory
    • …
    corecore