1,966 research outputs found
Variational bounds on the energy dissipation rate in body-forced shear flow
A new variational problem for upper bounds on the rate of energy dissipation
in body-forced shear flows is formulated by including a balance parameter in
the derivation from the Navier-Stokes equations. The resulting min-max problem
is investigated computationally, producing new estimates that quantitatively
improve previously obtained rigorous bounds. The results are compared with data
from direct numerical simulations.Comment: 15 pages, 7 figure
Exponentially growing solutions in homogeneous Rayleigh-Benard convection
It is shown that homogeneous Rayleigh-Benard flow, i.e., Rayleigh-Benard
turbulence with periodic boundary conditions in all directions and a volume
forcing of the temperature field by a mean gradient, has a family of exact,
exponentially growing, separable solutions of the full non-linear system of
equations. These solutions are clearly manifest in numerical simulations above
a computable critical value of the Rayleigh number. In our numerical
simulations they are subject to secondary numerical noise and resolution
dependent instabilities that limit their growth to produce statistically steady
turbulent transport.Comment: 4 pages, 3 figures, to be published in Phys. Rev. E - rapid
communication
Subdiffusion-limited reactions
We consider the coagulation dynamics A+A -> A and A+A A and the
annihilation dynamics A+A -> 0 for particles moving subdiffusively in one
dimension. This scenario combines the "anomalous kinetics" and "anomalous
diffusion" problems, each of which leads to interesting dynamics separately and
to even more interesting dynamics in combination. Our analysis is based on the
fractional diffusion equation
Variational bound on energy dissipation in turbulent shear flow
We present numerical solutions to the extended Doering-Constantin variational
principle for upper bounds on the energy dissipation rate in plane Couette
flow, bridging the entire range from low to asymptotically high Reynolds
numbers. Our variational bound exhibits structure, namely a pronounced minimum
at intermediate Reynolds numbers, and recovers the Busse bound in the
asymptotic regime. The most notable feature is a bifurcation of the minimizing
wavenumbers, giving rise to simple scaling of the optimized variational
parameters, and of the upper bound, with the Reynolds number.Comment: 4 pages, RevTeX, 5 postscript figures are available as one .tar.gz
file from [email protected]
Distribution of label spacings for genome mapping in nanochannels
In genome mapping experiments, long DNA molecules are stretched by confining
them to very narrow channels, so that the locations of sequence-specific
fluorescent labels along the channel axis provide large-scale genomic
information. It is difficult, however, to make the channels narrow enough so
that the DNA molecule is fully stretched. In practice its conformations may
form hairpins that change the spacings between internal segments of the DNA
molecule, and thus the label locations along the channel axis. Here we describe
a theory for the distribution of label spacings that explains the heavy tails
observed in distributions of label spacings in genome mapping experiments.Comment: 18 pages, 4 figures, 1 tabl
Resonant Activation Phenomenon for Non-Markovian Potential-Fluctuation Processes
We consider a generalization of the model by Doering and Gadoua to
non-Markovian potential-switching generated by arbitrary renewal processes. For
the Markovian switching process, we extend the original results by Doering and
Gadoua by giving a complete description of the absorption process. For all
non-Markovian processes having the first moment of the waiting time
distributions, we get qualitatively the same results as in the Markovian case.
However, for distributions without the first moment, the mean first passage
time curves do not exhibit the resonant activation minimum. We thus come to the
conjecture that the generic mechanism of the resonant activation fails for
fluctuating processes widely deviating from Markovian.Comment: RevTeX 4, 5 pages, 4 figures; considerably shortened version accepted
as a brief report to Phys. Rev.
Phase space dynamics of overdamped quantum systems
The phase space dynamics of dissipative quantum systems in strongly condensed
phase is considered. Based on the exact path integral approach it is shown that
the Wigner transform of the reduced density matrix obeys a time evolution
equation of Fokker-Planck type valid from high down to very low temperatures.
The effect of quantum fluctuations is discussed and the accuracy of these
findings is tested against exact data for a harmonic system.Comment: 7 pages, 2 figures, to appear in Euro. Phys. Let
Energy Dissipation in Fractal-Forced Flow
The rate of energy dissipation in solutions of the body-forced 3-d
incompressible Navier-Stokes equations is rigorously estimated with a focus on
its dependence on the nature of the driving force. For square integrable body
forces the high Reynolds number (low viscosity) upper bound on the dissipation
is independent of the viscosity, consistent with the existence of a
conventional turbulent energy cascade. On the other hand when the body force is
not square integrable, i.e., when the Fourier spectrum of the force decays
sufficiently slowly at high wavenumbers, there is significant direct driving at
a broad range of spatial scales. Then the upper limit for the dissipation rate
may diverge at high Reynolds numbers, consistent with recent experimental and
computational studies of "fractal-forced'' turbulence.Comment: 14 page
- …
