1,966 research outputs found

    Variational bounds on the energy dissipation rate in body-forced shear flow

    Full text link
    A new variational problem for upper bounds on the rate of energy dissipation in body-forced shear flows is formulated by including a balance parameter in the derivation from the Navier-Stokes equations. The resulting min-max problem is investigated computationally, producing new estimates that quantitatively improve previously obtained rigorous bounds. The results are compared with data from direct numerical simulations.Comment: 15 pages, 7 figure

    Exponentially growing solutions in homogeneous Rayleigh-Benard convection

    Get PDF
    It is shown that homogeneous Rayleigh-Benard flow, i.e., Rayleigh-Benard turbulence with periodic boundary conditions in all directions and a volume forcing of the temperature field by a mean gradient, has a family of exact, exponentially growing, separable solutions of the full non-linear system of equations. These solutions are clearly manifest in numerical simulations above a computable critical value of the Rayleigh number. In our numerical simulations they are subject to secondary numerical noise and resolution dependent instabilities that limit their growth to produce statistically steady turbulent transport.Comment: 4 pages, 3 figures, to be published in Phys. Rev. E - rapid communication

    Subdiffusion-limited reactions

    Full text link
    We consider the coagulation dynamics A+A -> A and A+A A and the annihilation dynamics A+A -> 0 for particles moving subdiffusively in one dimension. This scenario combines the "anomalous kinetics" and "anomalous diffusion" problems, each of which leads to interesting dynamics separately and to even more interesting dynamics in combination. Our analysis is based on the fractional diffusion equation

    Variational bound on energy dissipation in turbulent shear flow

    Full text link
    We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in plane Couette flow, bridging the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits structure, namely a pronounced minimum at intermediate Reynolds numbers, and recovers the Busse bound in the asymptotic regime. The most notable feature is a bifurcation of the minimizing wavenumbers, giving rise to simple scaling of the optimized variational parameters, and of the upper bound, with the Reynolds number.Comment: 4 pages, RevTeX, 5 postscript figures are available as one .tar.gz file from [email protected]

    Distribution of label spacings for genome mapping in nanochannels

    Full text link
    In genome mapping experiments, long DNA molecules are stretched by confining them to very narrow channels, so that the locations of sequence-specific fluorescent labels along the channel axis provide large-scale genomic information. It is difficult, however, to make the channels narrow enough so that the DNA molecule is fully stretched. In practice its conformations may form hairpins that change the spacings between internal segments of the DNA molecule, and thus the label locations along the channel axis. Here we describe a theory for the distribution of label spacings that explains the heavy tails observed in distributions of label spacings in genome mapping experiments.Comment: 18 pages, 4 figures, 1 tabl

    Resonant Activation Phenomenon for Non-Markovian Potential-Fluctuation Processes

    Full text link
    We consider a generalization of the model by Doering and Gadoua to non-Markovian potential-switching generated by arbitrary renewal processes. For the Markovian switching process, we extend the original results by Doering and Gadoua by giving a complete description of the absorption process. For all non-Markovian processes having the first moment of the waiting time distributions, we get qualitatively the same results as in the Markovian case. However, for distributions without the first moment, the mean first passage time curves do not exhibit the resonant activation minimum. We thus come to the conjecture that the generic mechanism of the resonant activation fails for fluctuating processes widely deviating from Markovian.Comment: RevTeX 4, 5 pages, 4 figures; considerably shortened version accepted as a brief report to Phys. Rev.

    Phase space dynamics of overdamped quantum systems

    Full text link
    The phase space dynamics of dissipative quantum systems in strongly condensed phase is considered. Based on the exact path integral approach it is shown that the Wigner transform of the reduced density matrix obeys a time evolution equation of Fokker-Planck type valid from high down to very low temperatures. The effect of quantum fluctuations is discussed and the accuracy of these findings is tested against exact data for a harmonic system.Comment: 7 pages, 2 figures, to appear in Euro. Phys. Let

    Energy Dissipation in Fractal-Forced Flow

    Get PDF
    The rate of energy dissipation in solutions of the body-forced 3-d incompressible Navier-Stokes equations is rigorously estimated with a focus on its dependence on the nature of the driving force. For square integrable body forces the high Reynolds number (low viscosity) upper bound on the dissipation is independent of the viscosity, consistent with the existence of a conventional turbulent energy cascade. On the other hand when the body force is not square integrable, i.e., when the Fourier spectrum of the force decays sufficiently slowly at high wavenumbers, there is significant direct driving at a broad range of spatial scales. Then the upper limit for the dissipation rate may diverge at high Reynolds numbers, consistent with recent experimental and computational studies of "fractal-forced'' turbulence.Comment: 14 page
    corecore