21,536 research outputs found

    Detecting many-body entanglements in noninteracting ultracold atomic fermi gases

    Full text link
    We explore the possibility of detecting many-body entanglement using time-of-flight (TOF) momentum correlations in ultracold atomic fermi gases. In analogy to the vacuum correlations responsible for Bekenstein-Hawking black hole entropy, a partitioned atomic gas will exhibit particle-hole correlations responsible for entanglement entropy. The signature of these momentum correlations might be detected by a sensitive TOF type experiment.Comment: 5 pages, 5 figures, fixed axes labels on figs. 3 and 5, added reference

    Radiation- and Phonon-Bottleneck-Induced Tunneling in the Fe8 Single-Molecule Magnet

    Full text link
    We measure magnetization changes in a single crystal of the single-molecule magnet Fe8 when exposed to intense, short (<20 μ\mus) pulses of microwave radiation resonant with the m = 10 to 9 transition. We find that radiation induces a phonon bottleneck in the system with a time scale of ~5 μ\mus. The phonon bottleneck, in turn, drives the spin dynamics, allowing observation of thermally assisted resonant tunneling between spin states at the 100-ns time scale. Detailed numerical simulations quantitatively reproduce the data and yield a spin-phonon relaxation time of T1 ~ 40 ns.Comment: 6 RevTeX pages, including 4 EPS figures, version accepted for publicatio

    The effect of uniaxial pressure on the magnetic anisotropy of the Mn_{12}-Ac single-molecule magnet

    Full text link
    We study the effect of uniaxial pressure on the magnetic hysteresis loops of the single-molecule magnet Mn_{12}-Ac. We find that the application of pressure along the easy axis increases the fields at which quantum tunneling of magnetization occurs. The observations are attributed to an increase in the molecule's magnetic anisotropy constant D of 0.142(1)%/kbar. The increase in D produces a small, but measurable increase in the effective energy barrier for magnetization reversal. Density-functional theory calculations also predict an increase in the barrier with applied pressure.Comment: version accepted by EPL; 6 pages, including 7 figures. Small changes and added reference

    Experimental Upper Bound on Superradiance Emission from Mn12 Acetate

    Full text link
    We used a Josephson junction as a radiation detector to look for evidence of the emission of electromagnetic radiation during magnetization avalanches in a crystal assembly of Mn_12-Acetate. The crystal assembly exhibits avalanches at several magnetic fields in the temperature range from 1.8 to 2.6 K with durations of the order of 1 ms. Although a recent study shows evidence of electromagnetic radiation bursts during these avalanches [J. Tejada, et al., Appl. Phys. Lett. {\bf 84}, 2373 (2004)], we were unable to detect any significant radiation at well-defined frequencies. A control experiment with external radiation pulses allows us to determine that the energy released as radiation during an avalanche is less than 1 part in 10^4 of the total energy released. In addition, our avalanche data indicates that the magnetization reversal process does not occur uniformly throughout the sample.Comment: 4 RevTeX pages, 3 eps figure

    DataWarp: Building Applications which Make Progress in an Inconsistent World

    No full text
    The usual approach to dealing with imperfections in data is to attempt to eliminate them. However, the nature of modern systems means this is often futile. This paper describes an approach which permits applications to operate notwithstanding inconsistent data. Instead of attempting to extract a single, correct view of the world from its data, a DataWarp application constructs a collection of interpretations. It adopts one of these and continues work. Since it acts on assumptions, the DataWarp application considers its recent work to be provisional, expecting eventually most of these actions will become definitive. Should the application decide to adopt an alternative data view, it may then need to void provisional actions before resuming work. We describe the DataWarp architecture, discuss its implementation and describe an experiment in which a DataWarp application in an environment containing inconsistent data achieves better results than its conventional counterpart

    The rotational modes of relativistic stars: Numerical results

    Full text link
    We study the inertial modes of slowly rotating, fully relativistic compact stars. The equations that govern perturbations of both barotropic and non-barotropic models are discussed, but we present numerical results only for the barotropic case. For barotropic stars all inertial modes are a hybrid mixture of axial and polar perturbations. We use a spectral method to solve for such modes of various polytropic models. Our main attention is on modes that can be driven unstable by the emission of gravitational waves. Hence, we calculate the gravitational-wave growth timescale for these unstable modes and compare the results to previous estimates obtained in Newtonian gravity (i.e. using post-Newtonian radiation formulas). We find that the inertial modes are slightly stabilized by relativistic effects, but that previous conclusions concerning eg. the unstable r-modes remain essentially unaltered when the problem is studied in full general relativity.Comment: RevTeX, 29 pages, 31 eps figure

    Cognitive Analytic Therapy in People with Learning Disability: An investigation into the common reciprocal roles found within this client group

    Get PDF
    Developments over the last twenty years have shown that, contrary to previous opinion, people with learning disabilities can benefit from psychotherapy (Sinason 1992; Kroese, Dagnan & Loumidia, 1997). Cognitive Analytic Therapy (CAT) has been adapted for use with a learning disability population (Ryle 2002). CAT collaboratively examines the Reciprocal Roles (RRs) a client plays in relationships. These are impacted by clients’ experiences of the world. The aim of this research is to identify which RRs may become apparent in working with people with learning disabilities. The therapy notes of participants (n=16) who had undergone CAT were examined and analysed using content analysis. Twenty-two different RRs were found. Four common Reciprocal Roles and two common idealised Reciprocal Roles were identified. Other observations about the data are presented. The limitations and clinical implications of the study are discussed

    Measurement of Magnetization Dynamics in Single-Molecule Magnets Induced by Pulsed Millimeter-Wave Radiation

    Full text link
    We describe an experiment aimed at measuring the spin dynamics of the Fe8 single-molecule magnet in the presence of pulsed microwave radiation. In earlier work, heating was observed after a 0.2-ms pulse of intense radiation, indicating that the spin system and the lattice were out of thermal equilibrium at millisecond time scale [Bal et al., Europhys. Lett. 71, 110 (2005)]. In the current work, an inductive pick-up loop is used to probe the photon-induced magnetization dynamics between only two levels of the spin system at much shorter time scales (from ns to us). The relaxation time for the magnetization, induced by a pulse of radiation, is found to be on the order of 10 us.Comment: 3 RevTeX pages, including 3 eps figures. The paper will appear in the Journal of Applied Physics as MMM'05 conference proceeding

    Radial sensitivity of kaonic atoms and strongly bound Kˉ\bar K states

    Full text link
    The strength of the low energy K^- nucleus real potential has recently received renewed attention in view of experimental evidence for the possible existence of strongly bound K^- states. Previous fits to kaonic atom data led to either 'shallow' or to 'deep' potentials, where only the former are in agreement with chiral approaches but only the latter can produce strongly bound states. Here we explore the uncertainties of the K^- nucleus optical potentials, obtained from fits to kaonic atom data, using the functional derivatives of the best-fit chi^2 values with respect to the potential. We find that only the deep type of potential provides information which is applicable to the K^- interaction in the nuclear interior.Comment: 4 pages, 4 figures minor additions, PRC Rapid Communication (in press
    • …
    corecore