117,016 research outputs found

    Phonon-phason coupling in icosahedral quasicrystals

    Full text link
    From relaxation simulations of decoration-based quasicrystal structure models using microscopically based interatomic pair potentials, we have calculated the (usually neglected) phonon-phason coupling constant. Its sign is opposite for the two alloys studied, i-AlMn and i-(Al,Cu)Li; a dimensionless measure of its magnitude relative to the phonon and phason elastic constants is of order 1/10, suggesting its effects are small but detectable. We also give a criterion for when phonon-phason effects are noticeable in diffuse tails of Bragg peaks.Comment: 7 pages, LaTeX, uses Europhys Lett macros (included

    Overall properties of the Gaia DR1 reference frame

    Full text link
    We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the {\it Gaia} DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J20015.0 period. Then we estimate the global rotation between TGAS with {\it Tycho}-2 proper motion systems to investigate the property of the {\it Gaia} DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of {\it Gaia} DR1 reference frame. The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of ∼\sim−0.1-0.1\mas~in {\it Gaia} quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset ∼\sim0.010.01\mas~of the ZZ axis direction of {\it Gaia} DR1 reference frame. The global rotation between TGAS and {\it Tycho}-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.240.24\masyr. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG=−0.38±0.15\omega_{Y_G} = -0.38 \pm 0.15\masyr~and the differential part ωYG′=−0.29±0.19\omega^\prime_{Y_G} = -0.29 \pm 0.19\masyr~around the YGY_G axis of Galactic coordinates, which indicates possible residual rotation in {\it Gaia} DR1 reference frame or problems in the current Galactic kinematical model.Comment: 6 pages, 1 figure. Accepted for publication in A&

    Formation of Compressed Flat Electron Beams with High Transverse-Emittance Ratios

    Full text link
    Flat beams -- beams with asymmetric transverse emittances -- have important applications in novel light-source concepts, advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat-beam-generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat-beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of the Fermilab's Advanced Superconducting Test Accelerator (ASTA). The optimizations of the flat beam generation and compression at ASTA were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC and 20 pC at ~37 MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25 {\mu}m (emittance ratio is ~400), 0.13 {\mu}m, 15 nm before compression, and 0.41 {\mu}m, 0.20 {\mu}m, 16 nm after full compression, respectively with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.Comment: 17

    Vibrational coherence in electron spin resonance in nanoscale oscillators

    Full text link
    We study a scheme for electrical detection, using electron spin resonance, of coherent vibrations in a molecular single electron level trapped near a conduction channel. Both equilibrium spin-currents and non-equilibrium spin- and charge currents are investigated. Inelastic side-band anti-resonances corresponding to the vibrational modes appear in the electron spin resonance spectrum.Comment: 4 pages, 3 figures: Published versio
    • …
    corecore