24 research outputs found

    A dissipative quantum reservoir for microwave light using a mechanical oscillator

    Get PDF
    Engineered dissipation can be used for quantum state preparation. This is achieved with a suitably engineered coupling to a dissipative cold reservoir usually formed by an electromagnetic mode. In the field of cavity electro- and optomechanics, the electromagnetic cavity naturally serves as a cold reservoir for the mechanical mode. Here, we realize the opposite scenario and engineer a mechanical oscillator cooled close to its ground state into a cold dissipative reservoir for microwave photons in a superconducting circuit. By tuning the coupling to this dissipative mechanical reservoir, we demonstrate dynamical backaction control of the microwave field, leading to stimulated emission and maser action. Moreover, the reservoir can function as a useful quantum resource, allowing the implementation of a near-quantum-limited phase-preserving microwave amplifier. Such engineered mechanical dissipation extends the toolbox of quantum manipulation techniques of the microwave field and constitutes a new ingredient for optomechanical protocols.This work was funded by the SNF, the NCCR Quantum Science and Technology (QSIT), and the European Union Seventh Framework Program through iQUOEMS (grant no. 323924). L.D.T. is supported by Marie Curie ITN cQOM (grant no. 290161). T.J.K. acknowledges financial support from an ERC AdG (QuREM). A.N. holds a University Research Fellowship from the Royal Society and acknowledges support from the Winton Programme for the Physics of Sustainability

    Theory of phase-mixing amplification in an optomechanical system

    No full text
    The investigation of the ultimate limits imposed by quantum mechanics on amplification represents an important topic both on a fundamental level and from the perspective of potential applications. We discuss here a novel regime for bosonic linear amplifiers—beside phase-insensitive and phase-sensitive amplification—which we term here phase-mixing amplification. Furthermore, we show that phase-mixing amplification can be realised in a cavity optomechanical setup, constituted by a mechanical resonator which is dispersively coupled to an optomechanical cavity asymmetrically driven around both mechanical sidebands. While, in general, this amplifier is phase-mixing, for a suitable choice of parameters, the amplifier proposed here operates as a phase-sensitive amplifier. We show that both configurations allow amplification with an added noise below the quantum limit of (phase-insensitive) amplification in a parameter range compatible with current experiments in microwave circuit optomechanics. In particular, we show that introducing phase-mixing amplification typically allows for a significant reduction of the added noise.peerReviewe

    Optomechanical measurement of a millimeter-sized mechanical oscillator approaching the quantum ground state

    No full text
    Cavity optomechanics is a tool to study the interaction between light and micromechanical motion. Here we observe optomechanical physics in a truly macroscopic oscillator close to the quantum ground state. As the mechanical system, we use a mm-sized piezoelectric quartz disk oscillator. Its motion is coupled to a charge qubit which translates the piezo-induced charge into an effective radiation-pressure interaction between the disk and a microwave cavity. We measure the thermal motion of the lowest mechanical shear mode at 7 MHz down to 30 mK, corresponding to roughly 10 2 quanta in a 20 mg oscillator. We estimate that with realistic parameters, it is possible to utilize the back-action cooling by the qubit in order to control macroscopic motion by a single Cooper pair. The work opens up opportunities for macroscopic quantum experiments.Peer reviewe

    Noiseless Quantum Measurement and Squeezing of Microwave Fields Utilizing Mechanical Vibrations

    No full text
    A process which strongly amplifies both quadrature amplitudes of an oscillatory signal necessarily adds noise. Alternatively, if the information in one quadrature is lost in phase-sensitive amplification, it is possible to completely reconstruct the other quadrature. Here we demonstrate such a nearly perfect phasesensitive measurement using a cavity optomechanical scheme, characterized by an extremely small noise less than 0.2 quanta. The device also strongly squeezes microwave radiation by 8 dB below vacuum. A source of bright squeezed microwaves opens up applications in manipulations of quantum systems, and noiseless amplification can be used even at modest cryogenic temperatures.peerReviewe

    Quantum Backaction Evading Measurement of Collective Mechanical Modes

    No full text
    The standard quantum limit constrains the precision of an oscillator position measurement. It arises from a balance between the imprecision and the quantum backaction of the measurement. However, a measurement of only a single quadrature of the oscillator can evade the backaction and be made with arbitrary precision. Here we demonstrate quantum backaction evading measurements of a collective quadrature of two mechanical oscillators, both coupled to a common microwave cavity. The work allows for quantum state tomography of two mechanical oscillators, and provides a foundation for macroscopic mechanical entanglement and force sensing beyond conventional quantum limits.Peer reviewe

    Sideband cooling of nearly degenerate micromechanical oscillators in a multimode optomechanical system

    No full text
    Multimode optomechanical systems are an emerging platform for studying fundamental aspects of matter near the quantum ground state and are useful in sensitive sensing and measurement applications. We study optomechanical cooling in a system where two nearly degenerate mechanical oscillators are coupled to a single microwave cavity. Due to an optically mediated coupling the two oscillators hybridize into a bright mode with a strong optomechanical cooling rate and a dark mode nearly decoupled from the system. We find that at high coupling, sideband cooling of the dark mode is strongly suppressed. Our results are relevant to novel optomechanical systems where multiple closely spaced modes are intrinsically present.QN/Steele La
    corecore