22,843 research outputs found
Recommended from our members
Widespread evidence for heterogeneous accretion of the terrestrial planets and planetisimals
The abundance and relative proportion of highly siderophile elements (HSEs) in Earth’s mantle deviate from those predicted by low-pressure equilibrium partitioning between metal and silicate during formation of the core. For many elements, high-pressure equilibration in a deep molten silicate layer (or ‘magma ocean’) may account for this discrepancy [1], but some highly siderophile element abundances demand the late addition, a ‘late veneer’, of extraterrestrial material (i.e. heterogeneous accretion) after core formation was complete [2]. Siderophile elements in smaller asteroidal bodies will not be affected by high-pressure metal-silicate equilibration and so, with highly efficient core formation [3] and if a ‘late veneer’ is absent, significant differences in the proportions of HSEs can be anticipated. Here we present new HSE abundance and 187Os/188Os isotope data for basaltic meteorites, the HEDs (howardites, eucrites and diogenites thought to sample the asteroid 4 Vesta), anomalous eucrites (considered to be from distinct Vesta-like parent bodies) angrites and aubrites (from unidentified parent bodies) and SNCs (thought to be from Mars). Our data, taken with those for lunar rocks [4], demonstrate that these igneous meteorites all formed from mantle sources that possessed chondritic (i.e. primitive solar system) elemental and isotope compositions, indicating that late accretion is not unique to Earth, but is a common feature of differentiated planets and asteroidal bodies. Variations in the total HSE abundance suggest that the proportion of ‘late veneer’ added is a simple consequence of the size of each body (cross-section and/or gravitational-attraction), and may account for the volatile element budget, and the oxidationstate of Earth, Mars, the Moon and Vesta
Effects of Demographics and Attitudes on WTP for Fuel Import Reductions through Ethanol Purchases
imported fuel, willingness to pay, Marketing,
Viscous to Inertial Crossover in Liquid Drop Coalescence
Using an electrical method and high-speed imaging we probe drop coalescence
down to 10 ns after the drops touch. By varying the liquid viscosity over two
decades, we conclude that at sufficiently low approach velocity where
deformation is not present, the drops coalesce with an unexpectedly late
crossover time between a regime dominated by viscous and one dominated by
inertial effects. We argue that the late crossover, not accounted for in the
theory, can be explained by an appropriate choice of length-scales present in
the flow geometry.Comment: 4 pages, 4 figure
A LOGIT ANALYSIS OF PARTICIPATION IN TENNESSEE'S FOREST STEWARDSHIP PROGRAM
This study determines the likely effect of cost-share incentives on participation in the Tennessee Forest Stewardship Program and identifies other factors that may contribute to participation. A random utility model is used to determine the probability that a landowner will choose to participate in the program. A binary choice model is specified to represent the dichotomous decision and a logit procedure is used to fit the model. Data are obtained from mail surveys of 4,000 randomly selected landowners. Results indicate that attitudes and knowledge of forestry programs may be more influential in a landowner's decision to participate than monetary incentives.Cost-share incentive, Stewardship Incentive Program, Logit, Nonindustrial private forest, NIPF, Participation, Forestry, Trees, Resource /Energy Economics and Policy,
Estimating the Impacts of Storage Dry Matter Losses on Switchgrass Production
This poster estimates dry matter losses as a function of harvest method, storage treatment, and time in storage. We then calculate the cost to store switchgrass bales under alternate harvest method and storage treatment scenarios; and determine the breakeven harvest method and storage treatment as a function of biomass price and time in storage.Biomass, bioenergy crops, function form, sustainable systems, Farm Management, Production Economics, Q10, Q42,
Regularization of point vortices for the Euler equation in dimension two
In this paper, we construct stationary classical solutions of the
incompressible Euler equation approximating singular stationary solutions of
this equation.
This procedure is carried out by constructing solutions to the following
elliptic problem [ -\ep^2 \Delta
u=(u-q-\frac{\kappa}{2\pi}\ln\frac{1}{\ep})_+^p, \quad & x\in\Omega, u=0, \quad
& x\in\partial\Omega, ] where , is a bounded
domain, is a harmonic function.
We showed that if is simply-connected smooth domain, then for any
given non-degenerate critical point of Kirchhoff-Routh function
with the same strength , there is a
stationary classical solution approximating stationary points vortex
solution of incompressible Euler equations with vorticity .
Existence and asymptotic behavior of single point non-vanishing vortex
solutions were studied by D. Smets and J. Van Schaftingen (2010).Comment: 32page
VARIABLE RATE NITROGEN APPLICATION ON CORN FIELDS: THE ROLE OF SPATIAL VARIABILITY AND WEATHER
Meta-response functions for corn yields and nitrogen losses were estimated from EPIC-generated data for three soil types and three weather scenarios. These metamodels were used to evaluate variable rate (VRT) versus uniform rate (URT) nitrogen application technologies for alternative weather scenarios and policy option. Except under very dry conditions, returns per acre for VRT were higher than for URT and the economic advantage of VRT increased as realized rainfall decreased from expected average rainfall. Nitrogen losses to the environment from VRT were lower for all situation examined, except on fields with little spatial variability.Corn, environment, meta-response functions, nitrogen restriction, precision farming, site-specific management, spatial variability, weather variability, Crop Production/Industries,
EFFECTS OF RISK, DISEASE, AND NITROGEN SOURCE ON OPTIMAL NITROGEN FERTILIZATION RATES IN WINTER WHEAT PRODUCTION
Interactions among nitrogen (N) fertilization rate, N source, and disease severity can affect mean yield and yield variance in conservation tillage wheat production. A Just-Pope model was used to evaluate the effects of N rate, N source, and disease on the spring N-fertilization decision. Ammonium nitrate (AN) was the utility-maximizing N source regardless of risk preferences. The net-return-maximizing AN rate was 92 lb N/acre, providing 35.11/acre.Crop Production/Industries,
Anisotropic dynamics of a vicinal surface under the meandering step instability
We investigate the nonlinear evolution of the Bales-Zangwill instability,
responsible for the meandering of atomic steps on a growing vicinal surface. We
develop an asymptotic method to derive, in the continuous limit, an evolution
equation for the two-dimensional step flow. The dynamics of the crystal surface
is greatly influenced by the anisotropy inherent to its geometry, and is
characterized by the coarsening of undulations along the step direction and by
the elastic relaxation in the mean slope direction. We demonstrate, using
similarity arguments, that the coalescence of meanders and the step flow follow
simple scaling laws, and deduce the exponents of the characteristic length
scales and height amplitude. The relevance of these results to experiments is
discussed.Comment: 10 pages, 7 figures; submitted to Phys. Rev.
- …
