4,879 research outputs found

    Quintessence Model and Observational Constraints

    Get PDF
    The recent observations of type Ia supernovae strongly support that the universe is accelerating now and decelerated in the recent past. By assuming a general relation between the quintessence potential and the quintessence kinetic energy, a general relation is found between the quintessence energy density and the scale factor. The potential includes both the hyperbolic and the double exponential potentials. A detailed analysis of the transition from the deceleration phase to the acceleration phase is then performed. We show that the current constraints on the transition time, the equation of state and the energy density of the quintessence field are satisfied in the model.Comment: update references,add acknowledgements and correct some errors, accepted for publication in class. and quant. gra

    The X-ray Position and Optical Counterpart of the Accretion-Powered Millisecond Pulsar XTE J1814-338

    Get PDF
    We report the precise optical and X-ray localization of the 3.2 ms accretion-powered X-ray pulsar XTE J1814-338 with data from the Chandra X-Ray Observatory as well as optical observations conducted during the 2003 June discovery outburst. Optical imaging of the field during the outburst of this soft X-ray transient reveals an R = 18 star at the X-ray position. This star is absent (R > 20) from an archival 1989 image of the field and brightened during the 2003 outburst, and we therefore identify it as the optical counterpart of XTE J1814-338. The best source position derived from optical astrometry is R.A. = 18h13m39.s04, Dec.= -33d46m22.3s (J2000). The featureless X-ray spectrum of the pulsar in outburst is best fit by an absorbed power-law (with photon index = 1.41 +- 0.06) plus blackbody (with kT = 0.95 +- 0.13 keV) model, where the blackbody component contributes approximately 10% of the source flux. The optical broad-band spectrum shows evidence for an excess of infrared emission with respect to an X-ray heated accretion disk model, suggesting a significant contribution from the secondary or from a synchrotron-emitting region. A follow-up observation performed when XTE J1814-338 was in quiescence reveals no counterpart to a limiting magnitude of R = 23.3. This suggests that the secondary is an M3 V or later-type star, and therefore very unlikely to be responsible for the soft excess, making synchroton emission a more reasonable candidate.Comment: Accepted for publication in ApJ. 6 pages; 3 figure

    The Cosmological Constant is Back

    Get PDF
    A diverse set of observations now compellingly suggest that Universe possesses a nonzero cosmological constant. In the context of quantum-field theory a cosmological constant corresponds to the energy density of the vacuum, and the wanted value for the cosmological constant corresponds to a very tiny vacuum energy density. We discuss future observational tests for a cosmological constant as well as the fundamental theoretical challenges---and opportunities---that this poses for particle physics and for extending our understanding of the evolution of the Universe back to the earliest moments.Comment: latex, 8 pages plus one ps figure available as separate compressed uuencoded fil

    Simulations of Electron Acceleration at Collisionless Shocks: The Effects of Surface Fluctuations

    Get PDF
    Energetic electrons are a common feature of interplanetary shocks and planetary bow shocks, and they are invoked as a key component of models of nonthermal radio emission, such as solar radio bursts. A simulation study is carried out of electron acceleration for high Mach number, quasi-perpendicular shocks, typical of the shocks in the solar wind. Two dimensional self-consistent hybrid shock simulations provide the electric and magnetic fields in which test particle electrons are followed. A range of different shock types, shock normal angles, and injection energies are studied. When the Mach number is low, or the simulation configuration suppresses fluctuations along the magnetic field direction, the results agree with theory assuming magnetic moment conserving reflection (or Fast Fermi acceleration), with electron energy gains of a factor only 2 - 3. For high Mach number, with a realistic simulation configuration, the shock front has a dynamic rippled character. The corresponding electron energization is radically different: Energy spectra display: (1) considerably higher maximum energies than Fast Fermi acceleration; (2) a plateau, or shallow sloped region, at intermediate energies 2 - 5 times the injection energy; (3) power law fall off with increasing energy, for both upstream and downstream particles, with a slope decreasing as the shock normal angle approaches perpendicular; (4) sustained flux levels over a broader region of shock normal angle than for adiabatic reflection. All these features are in good qualitative agreement with observations, and show that dynamic structure in the shock surface at ion scales produces effective scattering and can be responsible for making high Mach number shocks effective sites for electron acceleration.Comment: 26 pages, 12 figure

    Time-Resolved Intraband Relaxation of Strongly-Confined Electrons and Holes in Colloidal PbSe Nanocrystals

    Full text link
    The relaxation of strongly-confined electrons and holes between 1P and 1S levels in colloidal PbSe nanocrystals has been time-resolved using femtosecond transient absorption spectroscopy. In contrast to II-VI and III-V semiconductor nanocrystals, both electrons and holes are strongly confined in PbSe nanocrystals. Despite the large electron and hole energy level spacings (at least 12 times the optical phonon energy), we consistently observe picosecond time-scale relaxation. Existing theories of carrier relaxation cannot account for these experimental results. Mechanisms that could possibly circumvent the phonon bottleneck in IV-VI quantum dots are discussed

    Axion detection in the milli-eV mass range

    Full text link
    We propose an experimental scheme to search for galactic halo axions with mass ma∌10−3m_a \sim 10^{-3}eV, which is above the range accessible with cavity techniques. The detector consists of a large number of parallel superconducting wires embedded in a material transparent to microwave radiation. The wires carry a current configuration which produces a static, inhomogeneous magnetic field B⃗0(x⃗)\vec{B}_0(\vec{x}) within the detector volume. Axions which enter this volume may convert to photons. We discuss the feasibility of the detector and its sensitivity.Comment: LaTex, 9 pages, 4 figures (sent upon request), UFIFT-HEP-93--

    PHYCOBILISOMES AND ISOLATED PHYCOBILIPROTEINS. EFFECT OF GLUTARDIALDEHYDE AND BENZOQUINONE ON FLUORESCENCE

    Get PDF
    The fluorescence of the biliproteins C-phycocyanin from Spirulina platensis, B-phycoerythrin from Porphyridium cruentum and of isolated whole P. cruentum phycobilisomes is quenched in the presence of glutardialdehyde (GA) or benzoquinone (BQ). The kinetics of fluorescence decrease thus induced is biphasic. If GA is used as a quencher, the fluorescence can be recovered at 77 K. Contrary to the GA-effect, only a minor recovery takes place with BQ at 77K, thus demonstrating a different mechanism of action of GA and BQ on biliprotein
    • 

    corecore