24,213 research outputs found
Measuring consumer detriment under conditions of imperfect information
Copyright @ 2001 Office of Fair Tradin
Perceptions and correlates of peer-victimization and bullying
The experiences of peer-victimization and bullying are often treated empirically as though they are conceptually indistinct. Both involve repeated aggression,but definitions of bullying additionally emphasize the importance of aggressor intent and imbalance of power between the aggressor and the victim (Olweus, 1978; Whitney & Smith, 1993). The present study aimed to examine the extent to which peer-victimization and bullying are empirically similar. The sample comprised 1,429 pupils (50.2% male) aged between 8 and 13 years attending mainstream Scottish schools. Self-report questionnaire assessing peer-victimization and bullying, copingstrategy use (WCCL: Hunter, 2000), situational appraisal and depressive symptomatology (Birleson, 1981). Almost one-third (30.7%) of pupils reported experiencing peer-victimization, and of these 38.1% (11.7% of whole sample) were categorized as victims of bullying. Victims of bullying perceived higher levels of threat and lower levels of perceived control. They also reported using more Wishful Thinking and Social Support coping strategies, but did not differ on Problem Focused coping. Bullied pupils also reported higher levels of depressive symptomatology. Peer-victimization and bullying appear to be qualitatively different experiences for children and adolescents, with bullying being the more serious phenomenon
Characterization of Si/Si_(1-y)C_y superlattices grown by surfactant assisted molecular beam epitaxy
Si/Si_(0.97)C_(0.03) superlattices grown on Si(001) substrates by Sb surfactant assisted molecular beam epitaxy are characterized by in situ reflection high energy electron diffraction (RHEED), atomic force microscopy, transmission electron microscopy (TEM), and high resolution x‐ray diffraction. The RHEED shows that, in the absence of Sb, the growth front roughens during Si_(0.97)C_(0.03) growth and smooths during subsequent Si growth. In contrast, when Sb is present, the growth front remains smooth throughout the growth. This observation is confirmed by cross‐sectional TEM, which reveals that for samples grown without the use of Sb, the Si/Si_(0.97)C_(0.03) interfaces (Si_(0.97)C_(0.03) on Si) are much more abrupt than the Si_(0.97)C_(0.03)/Si interfaces. In the case of Sb assisted growth, there is no observable difference in abruptness between the two types of interfaces. Atomic force microscopy micrographs of the Si_(0.97)C_(0.03) surface reveal features that could be the source of the roughness observed by RHEED and TEM
Sb-surfactant-mediated growth of Si/Si1–yCy superlattices by molecular-beam epitaxy
Si/Si0.97C0.03 superlattices were grown on Si(001) substrates by molecular beam epitaxy (MBE) to study the use of Sb as a surfactant during Si1–yCy growth. In situ reflection high energy electron diffraction (RHEED) shows that while carbon easily disrupts the two-dimensional growth of homoepitaxial Si, such disruption is suppressed for layers grown on Sb-terminated Si(001) surfaces. Cross-sectional transmission electron microscopy (TEM) reveals that for samples grown without the use of Sb, the Si/Si0.97C0.03 interfaces (Si0.97C0.03 on Si) were much more abrupt than Si0.97C0.03/Si interfaces. In the case of Sb-mediated growth, differences in abruptness between the two types of interfaces were not readily observable
Deregulation and the relationship between bank CEO compensation and risk taking
The deregulation of the banking industry during the 1990s provides a natural (public policy) experiment for investigating how firms adjust their executive compensation contracts as the environment in which they operate becomes relatively more competitive. Using the Riegle-Neal Act of 1994 as a focal point, we investigate how banks changed the equity-based component of bank CEO compensation contracts. We also examine the relationships between equity- based compensation and risk, capital structure, and investment opportunity set. Consistent with theoretical predictions, we find that after deregulation, the equity- based component of bank CEO compensation increases significantly on average for the industry. Additionally, we find that more risky banks have significantly higher levels of equity-based compensation, as do banks with more investment opportunities. But, more levered banks do not have higher levels of equity-based CEO compensation. Finally, we observe that most of these relationships become more powerful in our post- deregulation period.Corporate governance ; Bank supervision
Band offsets in Si/Si1–x–yGexCy heterojunctions measured by admittance spectroscopy
We have used admittance spectroscopy to measure conduction-band and valence-band offsets in Si/Si1–xGex and Si/Si1–x–yGexCy heterostructures grown by solid-source molecular-beam epitaxy. Valence-band offsets measured for Si/Si1–xGex heterojunctions were in excellent agreement with previously reported values. Incorporation of C into Si1–x–yGexCy lowers the valence- and conduction-band-edge energies compared to those in Si1–xGex with the same Ge concentration. Comparison of our measured band offsets with previously reported measurements of energy band gaps in Si1–x–yGexCy and Si1–yCy alloy layers indicate that the band alignment is Type I for the compositions we have studied and that our measured band offsets are in quantitative agreement with these previously reported results
Electronic properties of Si/Si1–x–yGexCy heterojunctions
We have used admittance spectroscopy and deep-level transient spectroscopy to characterize electronic properties of Si/Si1–x–yGexCy heterostructures. Band offsets measured by admittance spectroscopy for compressively strained Si/Si1–x–yGexCy heterojunctions indicate that incorporation of C into Si1–x–yGexCy lowers both the valence- and conduction-band edges compared to those in Si1–xGex by an average of 107 ± 6 meV/% C and 75 ± 6 meV/% C, respectively. Combining these measurements indicates that the band alignment is type I for the compositions we have studied, and that these results are consistent with previously reported results on the energy band gap of Si1–x–yGexCy and with measurements of conduction band offsets in Si/Si1–yCy heterojunctions. Several electron traps were observed using deep-level transient spectroscopy on two n-type heterostructures. Despite the presence of a significant amount of nonsubstitutional C (0.29–1.6 at. %), none of the peaks appear attributable to previously reported interstitial C levels. Possible sources for these levels are discussed
Measurement of band offsets in Si/Si1–xGex and Si/Si1–x–yGexCy heterojunctions
Realization of group IV heterostructure devices requires the accurate measurement of the energy band offsets in Si/Si1–xGex and Si/Si1–x–yGexCy heterojunctions. Using admittance spectroscopy, we have measured valence-band offsets in Si/Si1–xGex heterostructures and conduction-band and valence-band offsets in Si/Si1–x–yGexCy heterostructures grown by solid-source molecular-beam epitaxy. Measured Si/Si1–xGex valence-band offsets were in excellent agreement with previously reported values. For Si/Si1–x–yGexCy our measurements yielded a conduction-band offset of 100 ± 11 meV for a n-type Si/Si0.82Ge0.169C0.011 heterojunction and valence-band offsets of 118 ± 12 meV for a p-type Si/Si0.79Ge0.206C0.004 heterojunction and 223 ± 20 meV for a p-type Si/Si0.595Ge0.394C0.011 heterojunction. Comparison of our measured band offsets with previously reported measurements of energy band gaps in Si1–x–yGexCy and Si1–yCy alloy layers indicates that the band alignment is type I for the compositions we have studied and that our measured band offsets are in quantitative agreement with these previously reported results
Deep-level transient spectroscopy of Si/Si1–x–yGexCy heterostructures
Deep-level transient spectroscopy was used to measure the activation energies of deep levels in n-type Si/Si1–x–yGexCy heterostructures grown by solid-source molecular-beam epitaxy. Four deep levels have been observed at various activation energies ranging from 231 to 405 meV below the conduction band. The largest deep-level concentration observed was in the deepest level and was found to be approximately 2 × 10^15 cm^–3. Although a large amount of nonsubstitutional C was present in the alloy layers (1–2 at. %), no deep levels were observed at any energy levels that, to the best of our knowledge, have been previously attributed to interstitial C
- …