217 research outputs found

    Comparison and calibration of a real-time virtual stenting algorithm using Finite Element Analysis and Genetic Algorithms

    Get PDF
    In this paper, we perform a comparative analysis between two computational methods for virtual stent deployment: a novel fast virtual stenting method, which is based on a spring–mass model, is compared with detailed finite element analysis in a sequence of in silico experiments. Given the results of the initial comparison, we present a way to optimise the fast method by calibrating a set of parameters with the help of a genetic algorithm, which utilises the outcomes of the finite element analysis as a learning reference. As a result of the calibration phase, we were able to substantially reduce the force measure discrepancy between the two methods and validate the fast stenting method by assessing the differences in the final device configurations

    NMR quantification of 16-O-methylcafestol and kahweol in Coffea canephora var. robusta beans from different geographical origins

    Get PDF
    Diterpenes have recently received a great deal of interest as tools to investigate the botanical origin of coffee. Specifically, kahweol has been proposed as a marker of Coffea arabica while 16-O-methylcafestol (16-OMC) is a Coffea canephora specific marker and its detection and quantification allow the authenticity of pure C. arabica roasted coffee blends to be assessed. In this study, we evaluated the possibility of the industrial use of the quantification of these diterpenes to assess the relative amounts of the two coffee species in blends. The content of 16-OMC and kahweol was determined in 78 samples (i.e., 39 green and the corresponding 39 roasted beans) of C. canephora from different geographical origins using a recently published NMR approach. Our results show a small natural variability in 16-OMC content for the Asian samples (average content = 1837 \ub1 113 mg/kg) while a much larger spread was found for the African samples (average content = 1744 \ub1 322 mg/kg). This large variability prevents the use of 16-OMC to quantify C. canephora in unknown roasted coffee blends. We also show that kahweol cannot be considered a specific C. arabica marker since it was detected almost all coffees and quantified in about 30% of the C. canephora samples

    Characterization of Flow Dynamics in the Pulmonary Bifurcation of Patients With Repaired Tetralogy of Fallot: A Computational Approach

    Get PDF
    The hemodynamic environment of the pulmonary bifurcation is of great importance for adult patients with repaired tetralogy of Fallot (rTOF) due to possible complications in the pulmonary valve and narrowing of the left pulmonary artery (LPA). The aim of this study was to computationally investigate the effect of geometrical variability and flow split on blood flow characteristics in the pulmonary trunk of patient-specific models. Data from a cohort of seven patients was used retrospectively and the pulmonary hemodynamics was investigated using averaged and MRI-derived patient-specific boundary conditions on the individualized models, as well as a statistical mean geometry. Geometrical analysis showed that curvature and tortuosity are higher in the LPA branch, compared to the right pulmonary artery (RPA), resulting in complex flow patterns in the LPA. The computational analysis also demonstrated high time-averaged wall shear stress (TAWSS) at the outer wall of the LPA and the wall of the RPA proximal to the junction. Similar TAWSS patterns were observed for averaged boundary conditions, except for a significantly modified flow split assigned at the outlets. Overall, this study enhances our understanding about the flow development in the pulmonary bifurcation of rTOF patients and associates some morphological characteristics with hemodynamic parameters, highlighting the importance of patient-specificity in the models. To confirm these findings, further studies are required with a bigger cohort of patients

    Patient-specific blood flow simulations in the pulmonary bifurcation of patients with tetralogy of fallot

    Get PDF
    Dysfunction of the pulmonary valve and narrowing of the branch pulmonary arteries are common chronic complications in adult patients with tetralogy of Fallot; the most common cyanotic congenital heart disease with an estimate prevalence 1 in 3000 live births. Clinical consequences include, but are not limited to, abnormal lung development and elevated pulmonary vascular resistance. It is, therefore, crucial to better understand and characterise the haemodynamic environment in the pulmonary bifurcation to better diagnose and treat these patients. In this study, we have focused on investigating the blood flow dynamics in patient-specific geometries of the pulmonary bifurcation by means of computational models

    Computational modelling for congenital heart disease: how far are we from clinical translation?

    Get PDF
    Computational models of congenital heart disease (CHD) have become increasingly sophisticated over the last 20 years. They can provide an insight into complex flow phenomena, allow for testing devices into patient-specific anatomies (pre-CHD or post-CHD repair) and generate predictive data. This has been applied to different CHD scenarios, including patients with single ventricle, tetralogy of Fallot, aortic coarctation and transposition of the great arteries. Patient-specific simulations have been shown to be informative for preprocedural planning in complex cases, allowing for virtual stent deployment. Novel techniques such as statistical shape modelling can further aid in the morphological assessment of CHD, risk stratification of patients and possible identification of new 'shape biomarkers'. Cardiovascular statistical shape models can provide valuable insights into phenomena such as ventricular growth in tetralogy of Fallot, or morphological aortic arch differences in repaired coarctation. In a constant move towards more realistic simulations, models can also account for multiscale phenomena (eg, thrombus formation) and importantly include measures of uncertainty (ie, CIs around simulation results). While their potential to aid understanding of CHD, surgical/procedural decision-making and personalisation of treatments is undeniable, important elements are still lacking prior to clinical translation of computational models in the field of CHD, that is, large validation studies, cost-effectiveness evaluation and establishing possible improvements in patient outcomes

    Population-specific material properties of the implantation site for transcatheter aortic valve replacement finite element simulations

    Get PDF
    Patient-specific computational models are an established tool to support device development and test under clinically relevant boundary conditions. Potentially, such models could be used to aid the clinical decision-making process for percutaneous valve selection; however, their adoption in clinical practice is still limited to individual cases. To be fully informative, they should include patient-specific data on both anatomy and mechanics of the implantation site. In this work, fourteen patient-specific computational models for transcatheter aortic valve replacement (TAVR) with balloon-expandable Sapien XT devices were retrospectively developed to tune the material parameters of the implantation site mechanical model for the average TAVR population. Pre-procedural computed tomography (CT) images were post-processed to create the 3D patient-specific anatomy of the implantation site. Balloon valvuloplasty and device deployment were simulated with finite element (FE) analysis. Valve leaflets and aortic root were modelled as linear elastic materials, while calcification as elastoplastic. Material properties were initially selected from literature; then, a statistical analysis was designed to investigate the effect of each implantation site material parameter on the implanted stent diameter and thus identify the combination of material parameters for TAVR patients. These numerical models were validated against clinical data. The comparison between stent diameters measured from post-procedural fluoroscopy images and final computational results showed a mean difference of 2.5 ± 3.9%. Moreover, the numerical model detected the presence of paravalvular leakage (PVL) in 79% of cases, as assessed by post-TAVR echocardiographic examination. The final aim was to increase accuracy and reliability of such computational tools for prospective clinical applications

    Mapping the use of computational modelling and simulation in clinics: A survey

    Get PDF
    In silico medicine describes the application of computational modelling and simulation (CM&S) to the study, diagnosis, treatment or prevention of a disease. Tremendous research advances have been achieved to facilitate the use of CM&S in clinical applications. Nevertheless, the uptake of CM&S in clinical practice is not always timely and accurately reflected in the literature. A clear view on the current awareness, actual usage and opinions from the clinicians is needed to identify barriers and opportunities for the future of in silico medicine. The aim of this study was capturing the state of CM&S in clinics by means of a survey toward the clinical community. Responses were collected online using the Virtual Physiological Human institute communication channels, engagement with clinical societies, hospitals and individual contacts, between 2020 and 2021. Statistical analyses were done with R. Participants (n = 163) responded from all over the world. Clinicians were mostly aged between 35 and 64 years-old, with heterogeneous levels of experience and areas of expertise (i.e., 48% cardiology, 13% musculoskeletal, 8% general surgery, 5% paediatrics). The CM&S terms “Personalised medicine” and “Patient-specific modelling” were the most well-known within the respondents. “In silico clinical trials” and “Digital Twin” were the least known. The familiarity with different methods depended on the medical specialty. CM&S was used in clinics mostly to plan interventions. To date, the usage frequency is still scarce. A well-recognized benefit associated to CM&S is the increased trust in planning procedures. Overall, the recorded level of trust for CM&S is high and not proportional to awareness level. The main barriers appear to be access to computing resources, perception that CM&S is slow. Importantly, clinicians see a role for CM&S expertise in their team in the future. This survey offers a snapshot of the current situation of CM&S in clinics. Although the sample size and representativity could be increased, the results provide the community with actionable data to build a responsible strategy for accelerating a positive uptake of in silico medicine. New iterations and follow-up activities will track the evolution of responses over time and contribute to strengthen the engagement with the medical community

    Finite element method for the design of implants for temporal hollowing

    Get PDF
    Temporal indentations are the most impacting craniofacial complication after coronal flap dissection. It is mainly due to a temporal fat pad or temporalis muscle dissection. Because of the great improvements achieved recently in CAD-CAM-aided surgery and the possibility of performing accurate pre-surgical virtual planning, it is now possible to correct it with a customised virtual approach. Furthermore, advancements in material science have allowed surgeons to rely on biocompatible materials like PEEK (showing a low complication and recurrence rate) for the manufacturing of patient-specific implants. We hereby describe our experience on a case of secondary and corrective surgery after a fronto-orbital remodelling, in which we used PEEK implants designed by CAD and optimized by finite element modelling

    A Proof of Concept of a Non-Invasive Image-Based Material Characterization Method for Enhanced Patient-Specific Computational Modeling

    Get PDF
    PURPOSE: Computational models of cardiovascular structures rely on their accurate mechanical characterization. A validated method able to infer the material properties of patient-specific large vessels is currently lacking. The aim of the present study is to present a technique starting from the flow-area (QA) method to retrieve basic material properties from magnetic resonance (MR) imaging. METHODS: The proposed method was developed and tested, first, in silico and then in vitro. In silico, fluid-structure interaction (FSI) simulations of flow within a deformable pipe were run with varying elastic modules (E) between 0.5 and 32 MPa. The proposed QA-based formulation was assessed and modified based on the FSI results to retrieve E values. In vitro, a compliant phantom connected to a mock circulatory system was tested within MR scanning. Images of the phantom were acquired and post-processed according to the modified formulation to infer E of the phantom. Results of in vitro imaging assessment were verified against standard tensile test. RESULTS: In silico results from FSI simulations were used to derive the correction factor to the original formulation based on the geometrical and material characteristics. In vitro, the modified QA-based equation estimated an average E = 0.51 MPa, 2% different from the E derived from tensile tests (i.e. E = 0.50 MPa). CONCLUSION: This study presented promising results of an indirect and non-invasive method to establish elastic properties from solely MR images data, suggesting a potential image-based mechanical characterization of large blood vessels
    • …
    corecore