452 research outputs found

    Valorization of not soluble byproducts deriving from green keratin extraction from poultry feathers as filler for biocomposites

    Get PDF
    The valorization of poultry feathers wastes is very important to reduce the environmental pollution deriving from their disposal. In this frame, we present the production process of completely natural, biodegradable, biocompatible, and eco-friendly composites made by not soluble keratin (NSK) and poly(lactic acid) (PLA). NSK has been obtained as a byproduct of a microwave-assisted keratin extraction from poultry feathers and it has been added to PLA pellets without adding any additional compatibilizers or plasticizers, unlike from the other works reported in the literature until now. The mixture has been used to obtain homogeneous NSK-based PLA filaments by means of hot-melt extrusion technology. The filaments have been subsequently 3D printed to explore applications in the additive manufacturing field. All the samples have unaltered thermal stability, but reduced toughness with respect to neat PLA. Other tested parameters (water adsorption, glass transition, and crystallinity) are dependent on NSK content and fabrication technology. Besides, Fourier Transform Infrared Spectroscopy highlights the differences in the structure of the NSK-based PLA filaments and 3D printed samples

    Valorization of a Levulinic Acid Platform through Electrospinning of Polyhydroxyalkanoate-Based Fibrous Membranes for in Vitro Modeling of Biological Barriers

    Get PDF
    In vitro models of biological barriers provide a reliable tool for investigating the physiopathological processes involved in the development of numerous diseases. Producing sustainable in vitro models obtained from solvents and biopolymers derived from industrial by-products add an important value to this underestimated source of valuable (bio)materials. This works aims at demonstrating the suitability of processing together solvents derived from levulinic acid (LA) (extracted from biomasses) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) (whose production is facilitated by LA) to produce electrospun membranes as proof-of-concept of a sustainable, engineered biological barrier fully derived from LA as the starting feedstock. The electrospinning process is initially optimized by identifying the most suitable conditions for obtaining self-supporting microporous membranes. In particular, LA-derived solvents (γ-valerolactone, 2-methyltetrahydrofuran, methyl ethyl ketone, and methyl and ethyl levulinate), PHBV concentration, and electrospinning process parameters were investigated. Self-standing and hydrophobic PHBV mats with a micropore size in the range of 1–7 μm and an average elastic modulus of 75 MPa are successfully obtained by using methyl ethyl ketone/formic acid as solvent. Preliminary cell experiments demonstrate that the developed fibrous PHBV mats promote the formation of a confluent monolayer of epithelial cells after 48 h and therefore they can potentially be used to mimic biological epithelial barriers

    One-pot process: Microwave-assisted keratin extraction and direct electrospinning to obtain keratin-based bioplastic

    Get PDF
    Poultry feathers are among the most abundant and polluting keratin-rich waste bio-masses. In this work, we developed a one-pot microwave-assisted process for eco-friendly keratin extraction from poultry feathers followed by a direct electrospinning (ES) of the raw extract, without further purification, to obtain keratin-based bioplastics. This microwave-assisted keratin extraction (MAE) was conducted in acetic acid 70% v/v. The effects of extraction time, solvent/feathers ratio, and heating mode (MAE vs conventional heating) on the extraction yield were investigated. The highest keratin yield (26 ± 1% w/w with respect to initial feathers) was obtained after 5 h of MAE. Waste-derived keratin were blended with gelatin to fabricate keratin-based biodegradable and bio-compatible bioplastics via ES, using 3-(Glycidyloxypropyl)trimethoxysilane (GPTMS) as a cross-linking agent. A full characterization of their thermal, mechanical, and barrier properties was performed by differential scanning calorimetry, thermogravimetric analysis, uniaxial tensile tests, and water permeability measurements. Their morphology and protein structure were investigated using scanning electron microscopy and attenuated total reflection-infrared spectroscopy. All these characterizations highlighted that the properties of the keratin-based bioplastics can be modulated by changing keratin and GPTMS concentrations. These bioplastics could be applied in areas such as bio-packaging and filtration/purification membranes

    Inhibitory 2B4 contributes to NK cell education and immunological derangements in XLP1 patients

    Get PDF
    X-linked lymphoproliferative disease 1 (XLP1) is an inherited immunodeficiency, caused by mutations in SH2D1A encoding Signaling Lymphocyte Activation Molecule (SLAM)-associated protein (SAP). In XLP1, 2B4, upon engagement with CD48, has inhibitory instead of activating function. This causes a selective inability of cytotoxic effectors to kill EBV-infected cells, with dramatic clinical sequelae. Here, we investigated the NK cell education in XLP1, upon characterization of killer Ig-like receptor (KIR)/KIR-L genotype and phenotypic repertoire of self-HLA class I specific inhibitory NK receptors (self-iNKRs). We also analyzed NK-cell cytotoxicity against CD48+ or CD48− KIR-ligand matched or autologous hematopoietic cells in XLP1 patients and healthy controls. XLP1 NK cells may show a defective phenotypic repertoire with substantial proportion of cells lacking self-iNKR. These NK cells are cytotoxic and the inhibitory 2B4/CD48 pathway plays a major role to prevent killing of CD48+ EBV-transformed B cells and M1 macrophages. Importantly, self-iNKR defective NK cells kill CD48− targets, such as mature DCs. Self-iNKR− NK cells in XLP1 patients are functional even in resting conditions, suggesting a role of the inhibitory 2B4/CD48 pathway in the education process during NK-cell maturation. Killing of autologous mature DC by self-iNKR defective XLP1 NK cells may impair adaptive responses, further exacerbating the patients’ immune defect

    Genetic predisposition to hemophagocytic lymphohistiocytosis: report on 500 patients from the Italian registry

    Get PDF
    Background Hemophagocytic lymphohistiocytosis (HLH) is a rare life-threatening disease affecting mostly children but also adults and characterized by hyperinflammatory features. A subset of patients, referred to as having familial hemophagocytic lymphohistiocytosis (FHL), have various underlying genetic abnormalities, the frequencies of which have not been systematically determined previously. Objective This work aims to further our understanding of the pathogenic bases of this rare condition based on an analysis of our 25 years of experience. Methods From our registry, we have analyzed a total of 500 unselected patients with HLH. Results Biallelic pathogenic mutations defining FHL were found in 171 (34%) patients; the proportion of FHL was much higher (64%) in patients given a diagnosis during the first year of life. Taken together, mutations of the genes PRF1 (FHL2) and UNC13D (FHL3) accounted for 70% of cases of FHL. Overall, a genetic diagnosis was possible in more than 90% of our patients with FHL. Perforin expression and the extent of degranulation have been more useful for diagnosing FHL than hemophagocytosis and the cytotoxicity assay. Of 281 (56%) patients classified as having "sporadic" HLH, 43 had monoallelic mutations in one of the FHL-defining genes. Given this gene dosage effect, FHL is not strictly recessive. Conclusion We suggest that the clinical syndrome HLH generally results from the combined effects of an exogenous trigger and genetic predisposition. Within this combination, different weights of exogenous and genetic factors account for the wide disease spectrum that ranges from HLH secondary to severe infection to FHL
    • …
    corecore