164 research outputs found
Phase diagram and single-particle spectrum of CuO layers within a variational cluster approach to the 3-band Hubbard model
We carry out a detailed numerical study of the three-band Hubbard model in
the underdoped region both in the hole- as well as in the electron-doped case
by means of the variational cluster approach. Both the phase diagram and the
low-energy single-particle spectrum are very similar to recent results for the
single-band Hubbard model with next-nearest-neighbor hoppings. In particular,
we obtain a mixed antiferromagnetic+superconducting phase at low doping with a
first-order transition to a pure superconducting phase accompanied by phase
separation. In the single-particle spectrum a clear Zhang-Rice singlet band
with an incoherent and a coherent part can be seen, in which holes enter upon
doping around . The latter is very similar to the coherent
quasi-particle band crossing the Fermi surface in the single-band model. Doped
electrons go instead into the upper Hubbard band, first filling the regions of
the Brillouin zone around . This fact can be related to the enhanced
robustness of the antiferromagnetic phase as a function of electron doping
compared to hole doping.Comment: 14 pages, 15 eps figure
Variational Cluster Perturbation Theory for Bose-Hubbard models
We discuss the application of the variational cluster perturbation theory
(VCPT) to the Mott-insulator--to--superfluid transition in the Bose-Hubbard
model. We show how the VCPT can be formulated in such a way that it gives a
translation invariant excitation spectrum -- free of spurious gaps -- despite
the fact that if formally breaks translation invariance. The phase diagram and
the single-particle Green function in the insulating phase are obtained for
one-dimensional systems. When the chemical potential of the cluster is taken as
a variational parameter, the VCPT reproduces the dimension dependence of the
phase diagram even for one-site clusters. We find a good quantitative agreement
with the results of the density-matrix renormalization group when the number of
sites in the cluster becomes of order 10. The extension of the method to the
superfluid phase is discussed.Comment: v1) 10 pages, 6 figures. v2) Final version as publishe
Variational cluster approach to the Hubbard model: Phase-separation tendency and finite-size effects
Using the variational cluster approach (VCA), we study the transition from
the antiferromagnetic to the superconducting phase of the two-dimensional
Hubbard model at zero temperature. Our calculations are based on a new method
to evaluate the VCA grand potential which employs a modified Lanczos algorithm
and avoids integrations over the real or imaginary frequency axis. Thereby,
very accurate results are possible for cluster sizes not accessible to full
diagonalization. This is important for an improved treatment of short-range
correlations, including correlations between Cooper pairs in particular. We
investigate the cluster-size dependence of the phase-separation tendency that
has been proposed recently on the basis of calculations for smaller clusters.
It is shown that the energy barrier driving the phase separation decreases with
increasing cluster size. This supports the conjecture that the ground state
exhibits microscopic inhomogeneities rather than macroscopic phase separation.
The evolution of the single-particle spectum as a function of doping is studied
in addtion and the relevance of our results for experimental findings is
pointed out.Comment: 7 pages, 6 figures, published versio
Variational cluster approach to correlated electron systems in low dimensions
A self-energy-functional approach is applied to construct cluster
approximations for correlated lattice models. It turns out that the
cluster-perturbation theory (Senechal et al, PRL 84, 522 (2000)) and the
cellular dynamical mean-field theory (Kotliar et al, PRL 87, 186401 (2001)) are
limiting cases of a more general cluster method. Results for the
one-dimensional Hubbard model are discussed with regard to boundary conditions,
bath degrees of freedom and cluster size.Comment: 4 pages, final version with minor change
Magnetic Properties of Ab initio Model for Iron-Based Superconductors LaFeAsO
By using variational Monte Carlo method, we examine an effective low-energy
model for LaFeAsO derived from an ab initio downfolding scheme. We show that
quantum and many-body fluctuations near a quantum critical point largely reduce
the antiferromagnetic (AF) ordered moment and the model not only quantitatively
reproduces the small ordered moment in LaFeAsO, but also explains the diverse
dependence on LaFePO, BaFe2As2 and FeTe. We also find that LaFeAsO is under
large orbital fluctuations, sandwiched by the AF Mott insulator and weakly
correlated metals. The orbital fluctuations and Dirac-cone dispersion hold keys
for the diverse magnetic properties.Comment: 4 pages, 4 figure
The 3-Band Hubbard-Model versus the 1-Band Model for the high-Tc Cuprates: Pairing Dynamics, Superconductivity and the Ground-State Phase Diagram
One central challenge in high- superconductivity (SC) is to derive a
detailed understanding for the specific role of the - and
- orbital degrees of freedom. In most theoretical studies an
effective one-band Hubbard (1BH) or t-J model has been used. Here, the physics
is that of doping into a Mott-insulator, whereas the actual high- cuprates
are doped charge-transfer insulators. To shed light on the related question,
where the material-dependent physics enters, we compare the competing magnetic
and superconducting phases in the ground state, the single- and two-particle
excitations and, in particular, the pairing interaction and its dynamics in the
three-band Hubbard (3BH) and 1BH-models. Using a cluster embedding scheme, i.e.
the variational cluster approach (VCA), we find which frequencies are relevant
for pairing in the two models as a function of interaction strength and doping:
in the 3BH-models the interaction in the low- to optimal-doping regime is
dominated by retarded pairing due to low-energy spin fluctuations with
surprisingly little influence of inter-band (p-d charge) fluctuations. On the
other hand, in the 1BH-model, in addition a part comes from "high-energy"
excited states (Hubbard band), which may be identified with a non-retarded
contribution. We find these differences between a charge-transfer and a Mott
insulator to be renormalized away for the ground-state phase diagram of the
3BH- and 1BH-models, which are in close overall agreement, i.e. are
"universal". On the other hand, we expect the differences - and thus, the
material dependence to show up in the "non-universal" finite-T phase diagram
(-values).Comment: 17 pages, 9 figure
Charge ordering in quarter-filled ladder systems coupled to the lattice
We investigate charge ordering in the presence of electron-phonon coupling
for quarter-filled ladder systems by using Exact Diagonalization. As an example
we consider NaV2O5 using model parameters obtained from first-principles
band-structure calculations. The relevant Holstein coupling to the lattice
considerably reduces the critical value of the nearest-neighbor Coulomb
repulsion at which formation of the zig-zag charge-ordered state occurs, which
is then accompanied by a static lattice distortion. Energy and length of a
kink-like excitation on the background of the distorted lattice are calculated.
Spin and charge spectra on ladders with and without static distortion are
obtained, and the charge gap and the effective spin-spin exchange parameter J
are extracted. J agrees well with experimental results. Analysis of the
dynamical Holstein model, restricted to a small number of phonons, shows that
low frequency lattice vibrations increase the charge order, accompanied by
dynamically produced zig-zag lattice distortions.Comment: 11 pages, 17 figures, revised version as to appear in Phys. Rev.
Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition
We discover that hcp phases of Fe and Fe0.9Ni0.1 undergo an electronic
topological transition at pressures of about 40 GPa. This topological change of
the Fermi surface manifests itself through anomalous behavior of the Debye
sound velocity, c/a lattice parameter ratio and M\"ossbauer center shift
observed in our experiments. First-principles simulations within the dynamic
mean field approach demonstrate that the transition is induced by many-electron
effects. It is absent in one-electron calculations and represents a clear
signature of correlation effects in hcp Fe
Satellites and large doping- and temperature-dependence of electronic properties in hole-doped BaFe2As2
Over the last years, superconductivity has been discovered in several
families of iron-based compounds. Despite intense research, even basic
electronic properties of these materials, such as Fermi surfaces, effective
electron masses, or orbital characters are still subject to debate. Here, we
address an issue that has not been considered before, namely the consequences
of dynamical screening of the Coulomb interactions among Fe-d electrons. We
demonstrate its importance not only for correlation satellites seen in
photoemission spectroscopy, but also for the low-energy electronic structure.
From our analysis of the normal phase of BaFe2As2 emerges the picture of a
strongly correlated compound with strongly doping- and temperature-dependent
properties. In the hole overdoped regime, an incoherent metal is found, while
Fermi-liquid behavior is recovered in the undoped compound. At optimal doping,
the self-energy exhibits an unusual square-root energy dependence which leads
to strong band renormalizations near the Fermi level
- …