30,545 research outputs found

    Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems

    Full text link
    Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simply Z_SL +Z_SR=0, where Z_SL (Z_SR)is the surface impedance of the semi-infinite PC on the left- (right-) hand side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or non-existence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin Zone. Our results provide new insights on the relationship between surface scattering properties, the bulk band properties and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner

    Excitation of nonlinear ion acoustic waves in CH plasmas

    Full text link
    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number kλDe k\lambda_{De} increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of Ti/Te<0.2 T_i/T_e < 0.2 in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with kλDek\lambda_{De} increasing. When kλDek\lambda_{De} is not large, such as kλDe=0.1,0.3,0.5k\lambda_{De}=0.1, 0.3, 0.5, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when kλDek\lambda_{De} is large, such as kλDe=0.7k\lambda_{De}=0.7, the linear frequency can not be applied to exciting the nonlinear IAW, while the frequency calculated by the dispersion relation with no damping can be applied to exciting the nonlinear IAW.Comment: 10 pages, 9 figures, Accepted by POP, Publication in August 1

    Constraints on masses of charged PGBs in technicolor model from decay B --> γ\gamma

    Get PDF
    In this paper we calculate the contributions to the branching ratio of B\to X_s \gamma from the charged Pseudo-Goldstone bosons appeared in one generation technicolor model. The current CLEO experimental results can eliminate large part of the parameter space in the m(P^\pm) - m(P_8^\pm) plane, and specifically, one can put a strong lower bound on the masses of color octet charged PGBs P_8^\pm: m(P^{\pm}_8) > 400\;GeV at 95\%C.L for free m(P^{\pm})

    Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser-plasmas interaction

    Full text link
    The anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascade have been researched by the Vlasov-Maxwell simulation. In the high-intensity laser-plasmas interaction, the stimulated anti-Stokes Brillouin scattering (SABS) will occur after the second stage SBS rescattering. The mechanism of SABS has been put forward to explain this phenomenon. And the SABS will compete with the SBS rescattering to determine the total SBS reflectivity. Thus, the SBS rescattering including the SABS is an important saturation mechanism of SBS, and should be taken into account in the high-intensity laser-plasmas interaction.Comment: 6 pages, 5 figure

    Charmless BPV,VVB \to PV, VV decays and new physics effects in the mSUGRA model

    Full text link
    By employing the QCD factorization approach, we calculate the new physics contributions to the branching radios of the two-body charmless BPV B \to PV and BVVB \to VV decays in the framework of the minimal supergravity (mSUGRA) model. we choose three typical sets of the mSUGRA input parameters in which the Wilson coefficient C7γ(mb)C_{7\gamma}(m_b) can be either SM-like (the case A and C) or has a flipped-sign (the case B). We found numerically that (a) the SUSY contributions are always very small for both case A and C; (b) for those tree-dominated decays, the SUSY contributions in case B are also very small; (c) for those QCD penguin-dominated decay modes, the SUSY contributions in case B can be significant, and can provide an enhancement about 3030% \sim 260% to the branching ratios of BK(π,ϕ,ρ)B \to K^*(\pi,\phi,\rho) and KϕK \phi decays, but a reduction about 3030% \sim 80% to BK(ρ,ω) B\to K(\rho, \omega) decays; and (d) the large SUSY contributions in the case B may be masked by the large theoretical errors dominated by the uncertainty from our ignorance of calculating the annihilation contributions in the QCD factorization approach.Comment: 34 pages, 8 PS figures, this is the correct version

    A new class of (2+1)(2+1)-d topological superconductor with Z8\mathbb{Z}_8 topological classification

    Full text link
    The classification of topological states of matter depends on spatial dimension and symmetry class. For non-interacting topological insulators and superconductors the topological classification is obtained systematically and nontrivial topological insulators are classified by either integer or Z2Z_2. The classification of interacting topological states of matter is much more complicated and only special cases are understood. In this paper we study a new class of topological superconductors in (2+1)(2+1) dimensions which has time-reversal symmetry and a Z2\mathbb{Z}_2 spin conservation symmetry. We demonstrate that the superconductors in this class is classified by Z8\mathbb{Z}_8 when electron interaction is considered, while the classification is Z\mathbb{Z} without interaction.Comment: 5 pages main text and 3 pages appendix. 1 figur

    Factorization of the Two Loop Four-Particle Amplitude in Superstring Theory Revisited

    Full text link
    We study in detail the factorization of the newly obtained two-loop four-particle amplitude in superstring theory. In particular some missing factors from the scalar correlators are obtained correctly, in comparing with a previous study of the factorization in two-loop superstring theory. Some details for the calculation of the factorization of the kinematic factor are also presented.Comment: 11 pages, 1 figure; v2, minor corrections and references update

    Dynamical study of the possible molecular state X(3872) with the s-channel one gluon exchange interaction

    Full text link
    The recently observed X(3872) resonance, which is difficult to be assigned a conventional ccˉc\bar{c} charmonium state in the quark model, may be interpreted as a molecular state. Such a molecular state is a hidden flavor four quark state because of its charmonium-like quantum numbers. The s-channel one gluon exchange is an interaction which only acts in the hidden flavor multi-quark system. In this paper, we will study the X(3872) and other similiar hidden flavor molecular states in a quark model by taking into account of the s-channel one gluon exchange interaction
    corecore