264,891 research outputs found
A Multiperiod OPF Model Under Renewable Generation Uncertainty and Demand Side Flexibility
Renewable energy sources such as wind and solar have received much attention
in recent years and large amount of renewable generation is being integrated to
the electricity networks. A fundamental challenge in power system operation is
to handle the intermittent nature of the renewable generation. In this paper we
present a stochastic programming approach to solve a multiperiod optimal power
flow problem under renewable generation uncertainty. The proposed approach
consists of two stages. In the first stage operating points for conventional
power plants are determined. Second stage realizes the generation from
renewable resources and optimally accommodates it by relying on demand-side
flexibility. The benefits from its application are demonstrated and discussed
on a 4-bus and a 39-bus systems. Numerical results show that with limited
flexibility on the demand-side substantial benefits in terms of potential
additional re-dispatch costs can be achieved. The scaling properties of the
approach are finally analysed based on standard IEEE test cases upto 300 buses,
allowing to underlined its computational efficiency.Comment: 8 pages, 10 figure
Form Factors Calculated on the Light-Front
A consistent treatment of decay is given on the
light-front. The to transition form factors are calculated in the
entire physical range of momentum transfer for the first time. The
valence-quark contribution is obtained using relativistic light-front wave
functions. Higher quark-antiquark Fock-state of the -meson bound state is
represented effectively by the configuration, and its effect
is calculated in the chiral perturbation theory. Wave function renormalization
is taken into account consistently. The contribution dominates
near the zero-recoil point ( GeV), and decreases rapidly as
the recoil momentum increases. We find that the calculated form factor
follows approximately a dipole -dependence in the entire range
of momentum transfer.Comment: Revtex, 19 pages, 9 figure
- …
